{"title":"Critical Analysis of Hydrogen Production by Aqueous Methanol Sonolysis","authors":"Aissa Dehane, Leila Nemdili, Slimane Merouani, Muthupandian Ashokkumar","doi":"10.1007/s41061-022-00418-1","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, several experimental and theoretical studies have demonstrated the feasibility of enhancing the sonochemical production of hydrogen via methanol pyrolysis within acoustic cavitation bubbles (i.e. sonolysis of aqueous methanol solution). This review includes both the experimental and theoretical achievements in the field of hydrogen production by methanol sonolysis. Additionally, the limits of the process’s applicability and plausible solutions are highlighted. The impact of different parameters influencing the process performance is discussed. Finally, the effects of methanol concentration on the size distribution of active cavitation bubbles are analyzed.</p></div>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"381 2","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-022-00418-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, several experimental and theoretical studies have demonstrated the feasibility of enhancing the sonochemical production of hydrogen via methanol pyrolysis within acoustic cavitation bubbles (i.e. sonolysis of aqueous methanol solution). This review includes both the experimental and theoretical achievements in the field of hydrogen production by methanol sonolysis. Additionally, the limits of the process’s applicability and plausible solutions are highlighted. The impact of different parameters influencing the process performance is discussed. Finally, the effects of methanol concentration on the size distribution of active cavitation bubbles are analyzed.
期刊介绍:
Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.