Chemosensation in C. elegans.

Cornelia I Bargmann
{"title":"Chemosensation in C. elegans.","authors":"Cornelia I Bargmann","doi":"10.1895/wormbook.1.123.1","DOIUrl":null,"url":null,"abstract":"<p><p>C. elegans has a highly developed chemosensory system that enables it to detect a wide variety of volatile (olfactory) and water-soluble (gustatory) cues associated with food, danger, or other animals. Much of its nervous system and more than 5% of its genes are devoted to the recognition of environmental chemicals. Chemosensory cues can elicit chemotaxis, rapid avoidance, changes in overall motility, and entry into and exit from the alternative dauer developmental stage. These behaviors are regulated primarily by the amphid chemosensory organs, which contain eleven pairs of chemosensory neurons. Each amphid sensory neuron expresses a specific set of candidate receptor genes and detects a characteristic set of attractants, repellents, or pheromones. About 500-1000 different G protein-coupled receptors (GPCRs) are expressed in chemosensory neurons, and these may be supplemented by alternative sensory pathways as well. Downstream of the GPCRs, two signal transduction systems are prominent in chemosensation, one that uses cGMP as a second messenger to open cGMP-gated channels, and one that relies upon TRPV channels. These sensory pathways are modulated and fine-tuned by kinases and phosphatases. Chemosensory preferences can be modified by sensory adaptation, developmental history, and associative learning, allowing C. elegans to integrate context and experience into its behavior.</p>","PeriodicalId":75344,"journal":{"name":"WormBook : the online review of C. elegans biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1895/wormbook.1.123.1","citationCount":"622","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WormBook : the online review of C. elegans biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1895/wormbook.1.123.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 622

Abstract

C. elegans has a highly developed chemosensory system that enables it to detect a wide variety of volatile (olfactory) and water-soluble (gustatory) cues associated with food, danger, or other animals. Much of its nervous system and more than 5% of its genes are devoted to the recognition of environmental chemicals. Chemosensory cues can elicit chemotaxis, rapid avoidance, changes in overall motility, and entry into and exit from the alternative dauer developmental stage. These behaviors are regulated primarily by the amphid chemosensory organs, which contain eleven pairs of chemosensory neurons. Each amphid sensory neuron expresses a specific set of candidate receptor genes and detects a characteristic set of attractants, repellents, or pheromones. About 500-1000 different G protein-coupled receptors (GPCRs) are expressed in chemosensory neurons, and these may be supplemented by alternative sensory pathways as well. Downstream of the GPCRs, two signal transduction systems are prominent in chemosensation, one that uses cGMP as a second messenger to open cGMP-gated channels, and one that relies upon TRPV channels. These sensory pathways are modulated and fine-tuned by kinases and phosphatases. Chemosensory preferences can be modified by sensory adaptation, developmental history, and associative learning, allowing C. elegans to integrate context and experience into its behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
秀丽隐杆线虫的化学感觉。
秀丽隐杆线虫具有高度发达的化学感觉系统,使其能够探测到与食物、危险或其他动物有关的各种挥发性(嗅觉)和水溶性(味觉)线索。它的大部分神经系统和超过5%的基因都致力于识别环境中的化学物质。化学感觉线索可以引起趋化性、快速回避、整体运动性的变化以及进入和退出替代动力发育阶段。这些行为主要由两栖动物的化学感觉器官调节,该器官包含11对化学感觉神经元。每个两栖动物感觉神经元表达一组特定的候选受体基因,并检测一组特征的引诱剂、驱避剂或信息素。大约有500-1000种不同的G蛋白偶联受体(gpcr)在化学感觉神经元中表达,它们也可能通过其他感觉通路得到补充。在gpcr的下游,两种信号转导系统在化学感觉中发挥着重要作用,一种使用cGMP作为第二信使打开cGMP门控通道,另一种依赖于TRPV通道。这些感觉通路受到激酶和磷酸酶的调节和微调。化学感觉偏好可以通过感觉适应、发育历史和联想学习来改变,使秀丽隐杆线虫能够将环境和经验整合到其行为中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. Small GTPases. Signaling in the innate immune response. Working with dauer larvae. Caenorhabditis nomenclature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1