{"title":"Palladium-Catalyzed Cascade Reactions of δ-Ketonitriles with Arylboronic Acids: Synthesis of Pyridines","authors":"Xinrong Yao, Linjun Qi, Renhao Li*, Qianqian Zhen, Jichao Liu, Zhiwei Zhao, Yinlin Shao, Maolin Hu*, Jiuxi Chen*","doi":"10.1021/acscombsci.9b00198","DOIUrl":null,"url":null,"abstract":"<p >This study presents the first example of the Pd-catalyzed cascade reactions of 5-oxohexanenitrile with arylboronic acids, affording important synthon 2-methylpyridines that can be further translated through C(sp<sup>3</sup>)-H functionalization to construct pyridine derivatives. Furthermore, this chemistry allows 5-oxo-5-arylpentanenitrile to react with arylboronic acids to provide unsymmetrical 2,6-diarylpyridines. This protocol paves the way for the practical and atom economical syntheses of valuable pyridines with broad functional groups in moderate to excellent yields under mild conditions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acscombsci.9b00198","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscombsci.9b00198","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 11
Abstract
This study presents the first example of the Pd-catalyzed cascade reactions of 5-oxohexanenitrile with arylboronic acids, affording important synthon 2-methylpyridines that can be further translated through C(sp3)-H functionalization to construct pyridine derivatives. Furthermore, this chemistry allows 5-oxo-5-arylpentanenitrile to react with arylboronic acids to provide unsymmetrical 2,6-diarylpyridines. This protocol paves the way for the practical and atom economical syntheses of valuable pyridines with broad functional groups in moderate to excellent yields under mild conditions.