{"title":"Succi nervorum: a brief history of neurochemistry.","authors":"P Foley","doi":"10.1007/978-3-211-73574-9_2","DOIUrl":null,"url":null,"abstract":"<p><p>The nature of intracellular communication and integration in the central nervous system remained a source of controversy long after it had been accepted that the brain is intrinsically involved in the reception of external and internal sensory impressions, in the control of both voluntary and involuntary physiological functions, and in the processes associated with consciousness and psychic function in humans. The role of the specific chemistry of the brain in these functions was specifically addressed only in the 20th century, although chemical examination of brain tissue can be traced at least as far back as 1719 to Hensing's Cerebri examen chemicum. Throughout the 1940s and 1950s evidence accumulated from a variety of laboratories that certain chemical substances, such as acetylcholine, noradrenaline and histamine, might be involved in central nervous system neurotransmission, but conclusive evidence for such communication was difficult to obtain. Commencing with Carlsson's 1957 paper on the anti-reserpine effects of DOPA and culminating in the successful amelioration of parkinsonian akinesia by Birkmayer and Hornykiewicz via administration of L-DOPA in 1961, followed by the identification of specific nervous tracts which utilized dopamine as a transmitter, chemical neurotransmission in the brain was ultimately demonstrated through a combination of pharmacological, physiological and clinical research. Neurochemistry had thereby graduated from a branch of general physiology to being centrally involved in models of central nervous system function.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"5-15"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission-supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-211-73574-9_2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The nature of intracellular communication and integration in the central nervous system remained a source of controversy long after it had been accepted that the brain is intrinsically involved in the reception of external and internal sensory impressions, in the control of both voluntary and involuntary physiological functions, and in the processes associated with consciousness and psychic function in humans. The role of the specific chemistry of the brain in these functions was specifically addressed only in the 20th century, although chemical examination of brain tissue can be traced at least as far back as 1719 to Hensing's Cerebri examen chemicum. Throughout the 1940s and 1950s evidence accumulated from a variety of laboratories that certain chemical substances, such as acetylcholine, noradrenaline and histamine, might be involved in central nervous system neurotransmission, but conclusive evidence for such communication was difficult to obtain. Commencing with Carlsson's 1957 paper on the anti-reserpine effects of DOPA and culminating in the successful amelioration of parkinsonian akinesia by Birkmayer and Hornykiewicz via administration of L-DOPA in 1961, followed by the identification of specific nervous tracts which utilized dopamine as a transmitter, chemical neurotransmission in the brain was ultimately demonstrated through a combination of pharmacological, physiological and clinical research. Neurochemistry had thereby graduated from a branch of general physiology to being centrally involved in models of central nervous system function.