Martin J Lohse, Carsten Hoffmann, Viacheslav O Nikolaev, Jean-Pierre Vilardaga, Moritz Bünemann
{"title":"Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells.","authors":"Martin J Lohse, Carsten Hoffmann, Viacheslav O Nikolaev, Jean-Pierre Vilardaga, Moritz Bünemann","doi":"10.1016/S0065-3233(07)74005-6","DOIUrl":null,"url":null,"abstract":"<p><p>We describe and review methods for the kinetic analysis of G protein-coupled receptor (GPCR) activation and signaling that are based on optical methods. In particular, we describe the use of fluorescence resonance energy transfer (FRET) as a means of analyzing conformational changes within a single protein (for example a receptor) or between subunits of a protein complex (such as a G protein heterotrimer) and finally between distinct proteins (such as a receptor and a G protein). These methods allow the analysis of signaling kinetics in intact cells with proteins that retain their essential functional properties. They have produced a number of unexpected results: fast receptor activation kinetics in the millisecond range, similarly fast kinetics for receptor-G protein interactions, but much slower activation kinetics for G protein activation.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"74 ","pages":"167-88"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(07)74005-6","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Protein Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/S0065-3233(07)74005-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
We describe and review methods for the kinetic analysis of G protein-coupled receptor (GPCR) activation and signaling that are based on optical methods. In particular, we describe the use of fluorescence resonance energy transfer (FRET) as a means of analyzing conformational changes within a single protein (for example a receptor) or between subunits of a protein complex (such as a G protein heterotrimer) and finally between distinct proteins (such as a receptor and a G protein). These methods allow the analysis of signaling kinetics in intact cells with proteins that retain their essential functional properties. They have produced a number of unexpected results: fast receptor activation kinetics in the millisecond range, similarly fast kinetics for receptor-G protein interactions, but much slower activation kinetics for G protein activation.