Signal-induced functions of the transcription factor TFII-I

Ananda L. Roy
{"title":"Signal-induced functions of the transcription factor TFII-I","authors":"Ananda L. Roy","doi":"10.1016/j.bbaexp.2007.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>We have learned a great deal over the last several years about the molecular mechanisms that govern cell growth, cell division and cell death. Normal cells pass through cell cycle (growth) and divide in response to mitogenic signals that are transduced through their cognate cell surface receptors to the nucleus. Despite the fact that cellular growth and division are mechanistically distinct steps, they are usually coordinately regulated, which is critical for normal cellular proliferation. The precise mechanistic basis for this coordinated regulation is unclear. TFII-I is a unique, signal-induced multifunctional transcription factor that is activated upon a variety of signaling pathways and appears to participate in distinct phases of cell growth. For instance, TFII-I is required for growth factor-induced transcriptional activation of the c-<em>fos</em> gene, which is essential for cell cycle entry. Two alternatively spliced isoforms of TFII-I exhibit opposing but necessary functions for mitogen-induced transcriptional activation of c-<em>fos</em>. Besides transcriptional activation of the c-<em>fos</em> proto-oncogene and eventual entry into cell cycle, TFII-I also appears to have a role in later phases of the cell cycle and cell division. Here we discuss how a multitude of signaling inputs target TFII-I isoforms, which may exert their functions in distinct phases of the cell cycle and play a key role in the coordinated regulation of cellular proliferation.</p></div>","PeriodicalId":100161,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression","volume":"1769 11","pages":"Pages 613-621"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbaexp.2007.10.002","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167478107001522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

We have learned a great deal over the last several years about the molecular mechanisms that govern cell growth, cell division and cell death. Normal cells pass through cell cycle (growth) and divide in response to mitogenic signals that are transduced through their cognate cell surface receptors to the nucleus. Despite the fact that cellular growth and division are mechanistically distinct steps, they are usually coordinately regulated, which is critical for normal cellular proliferation. The precise mechanistic basis for this coordinated regulation is unclear. TFII-I is a unique, signal-induced multifunctional transcription factor that is activated upon a variety of signaling pathways and appears to participate in distinct phases of cell growth. For instance, TFII-I is required for growth factor-induced transcriptional activation of the c-fos gene, which is essential for cell cycle entry. Two alternatively spliced isoforms of TFII-I exhibit opposing but necessary functions for mitogen-induced transcriptional activation of c-fos. Besides transcriptional activation of the c-fos proto-oncogene and eventual entry into cell cycle, TFII-I also appears to have a role in later phases of the cell cycle and cell division. Here we discuss how a multitude of signaling inputs target TFII-I isoforms, which may exert their functions in distinct phases of the cell cycle and play a key role in the coordinated regulation of cellular proliferation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录因子TFII-I -i的信号诱导功能
在过去的几年里,我们对控制细胞生长、细胞分裂和细胞死亡的分子机制学到了很多。正常细胞通过细胞周期(生长)和分裂响应有丝分裂信号,这些信号通过其同源细胞表面受体转导到细胞核。尽管细胞生长和分裂在机械上是不同的步骤,但它们通常是协调调节的,这对正常的细胞增殖至关重要。这种协调监管的确切机制基础尚不清楚。TFII-I是一种独特的,信号诱导的多功能转录因子,可通过多种信号通路激活,并参与细胞生长的不同阶段。例如,TFII-I是生长因子诱导的c-fos基因转录激活所必需的,而c-fos基因是细胞周期进入所必需的。TFII-I的两个选择性剪接异构体在丝裂原诱导的c-fos转录激活中表现出相反但必要的功能。除了c-fos原癌基因的转录激活和最终进入细胞周期外,TFII-I似乎还在细胞周期和细胞分裂的后期阶段发挥作用。在这里,我们讨论了多种信号输入如何靶向TFII-I - i异构体,这些异构体可能在细胞周期的不同阶段发挥其功能,并在细胞增殖的协调调节中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Expression of the human CMP-NeuAc:GM3 α2,8-sialyltransferase (GD3 synthase) gene through the NF-κB activation in human melanoma SK-MEL-2 cells TF2 binds to the regulatory promoter of alkaline phosphatase in Dicytostelium IGF-1 controls GLUT3 expression in muscle via the transcriptional factor Sp1 CCAAT/Enhancer-binding protein β regulates expression of human T1R3 taste receptor gene in the bile duct carcinoma cell line, HuCCT1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1