Hawking temperature of black holes with multiple horizons

IF 2.1 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS General Relativity and Gravitation Pub Date : 2023-09-28 DOI:10.1007/s10714-023-03154-z
Chiranjeeb Singha, Pritam Nanda, Pabitra Tripathy
{"title":"Hawking temperature of black holes with multiple horizons","authors":"Chiranjeeb Singha,&nbsp;Pritam Nanda,&nbsp;Pabitra Tripathy","doi":"10.1007/s10714-023-03154-z","DOIUrl":null,"url":null,"abstract":"<div><p>There are several well-established methods for computing thermodynamics in single-horizon spacetimes. However, understanding thermodynamics becomes particularly important when dealing with spacetimes with multiple horizons. Multiple horizons raise questions about the existence of a global temperature for such spacetimes. Recent studies highlight the significant role played by the contribution of all the horizons in determining Hawking’s temperature. Here we explore the Hawking temperature of a rotating and charged black hole in four spacetime dimensions and a rotating BTZ black hole. We also find that each horizon of those black holes contributes to the Hawking temperature. The effective Hawking temperature for a four-dimensional rotating and charged black hole depends only on its mass. This temperature is the same as the Hawking temperature of a Schwarzschild’s black hole. In contrast, the effective Hawking temperature depends on the black hole’s mass and angular momentum for a rotating BTZ hole.\n</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"55 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-023-03154-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

There are several well-established methods for computing thermodynamics in single-horizon spacetimes. However, understanding thermodynamics becomes particularly important when dealing with spacetimes with multiple horizons. Multiple horizons raise questions about the existence of a global temperature for such spacetimes. Recent studies highlight the significant role played by the contribution of all the horizons in determining Hawking’s temperature. Here we explore the Hawking temperature of a rotating and charged black hole in four spacetime dimensions and a rotating BTZ black hole. We also find that each horizon of those black holes contributes to the Hawking temperature. The effective Hawking temperature for a four-dimensional rotating and charged black hole depends only on its mass. This temperature is the same as the Hawking temperature of a Schwarzschild’s black hole. In contrast, the effective Hawking temperature depends on the black hole’s mass and angular momentum for a rotating BTZ hole.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多视界黑洞的Hawking温度
在单视界时空中,有几种公认的热力学计算方法。然而,在处理具有多个视界的时空时,理解热力学变得尤为重要。多个视界引发了关于在这样的时空中是否存在全球温度的问题。最近的研究强调了所有视界在确定霍金温度方面所起的重要作用。在这里,我们探索了四个时空维度的旋转带电黑洞和旋转BTZ黑洞的霍金温度。我们还发现,这些黑洞的每一个视界都对霍金温度有贡献。四维旋转带电黑洞的有效霍金温度仅取决于其质量。该温度与史瓦西黑洞的霍金温度相同。相比之下,有效的霍金温度取决于黑洞的质量和旋转BTZ黑洞的角动量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
期刊最新文献
Bose-Einstein condensate stars in combined Rastall-Rainbow gravity Joule-thomson expansion of vanished cooling region for five-dimensional neutral Gauss-Bonnet AdS black hole GUP deformed background dynamics of phantom field Role of dynamical vacuum energy in the closed universe: implications for bouncing scenario Novel approach to solving Schwarzschild black hole perturbation equations via physics informed neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1