{"title":"Multiscale Dissipative Processes in the Earth’s Magnetotail","authors":"B. Petrenko","doi":"10.3103/S0884591323050069","DOIUrl":null,"url":null,"abstract":"<p>The dissipation in the geomagnetic tail is a process that stops the cascade transfer of energy in the inertial turbulent range and transforms the energy of turbulent motions into heating. In the case of kinetic turbulence with the dominance of the thermal pressure over the magnetic field pressure, dissipation is also possible in the inertial range. This study considers an approach for obtaining the distribution of the energy-conversion rate (multiscale spectrum) of the electromagnetic field with the preliminary involvement of the multispacecraft method for calculating the current density. For the first time, a multiscale spectrum of the energy conversion rate in the tail of the Earth’s magnetosphere is obtained and analyzed. The results of measuring the magnetic and electric fields by the MMS mission spacecraft in the region of the current stratum and during high-speed plasma flows in the plasma layer during September 8, 2021 are used.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"39 5","pages":"300 - 303"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591323050069","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The dissipation in the geomagnetic tail is a process that stops the cascade transfer of energy in the inertial turbulent range and transforms the energy of turbulent motions into heating. In the case of kinetic turbulence with the dominance of the thermal pressure over the magnetic field pressure, dissipation is also possible in the inertial range. This study considers an approach for obtaining the distribution of the energy-conversion rate (multiscale spectrum) of the electromagnetic field with the preliminary involvement of the multispacecraft method for calculating the current density. For the first time, a multiscale spectrum of the energy conversion rate in the tail of the Earth’s magnetosphere is obtained and analyzed. The results of measuring the magnetic and electric fields by the MMS mission spacecraft in the region of the current stratum and during high-speed plasma flows in the plasma layer during September 8, 2021 are used.
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.