Magnetic Specific Heat Near the Antiferromagnetic Superconductor Phase to Normal State Phase Transition in Rare-Earth Superconductors

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED Journal of Superconductivity and Novel Magnetism Pub Date : 2023-09-02 DOI:10.1007/s10948-023-06613-5
Prabir K. Mukherjee
{"title":"Magnetic Specific Heat Near the Antiferromagnetic Superconductor Phase to Normal State Phase Transition in Rare-Earth Superconductors","authors":"Prabir K. Mukherjee","doi":"10.1007/s10948-023-06613-5","DOIUrl":null,"url":null,"abstract":"<div><p>The existence of antiferromagnetism in rare-earth superconductors exhibits varieties of new physical phenomena. Experiments have highlighted the magnetic specific heat anomalies in antiferromagnetic superconductor. Structured around a Ginzburg-Landau theory, this article presents the role of magnetic field on the specific heat near the antiferromagnetic superconductor phase to normal state phase transition in rare-earth superconductors. The magnetic specific heat is calculated both at the antiferromagnetic superconductor phase and normal state. The qualitative agreement between theory and experiment is discussed.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"36 7-9","pages":"1649 - 1653"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-023-06613-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of antiferromagnetism in rare-earth superconductors exhibits varieties of new physical phenomena. Experiments have highlighted the magnetic specific heat anomalies in antiferromagnetic superconductor. Structured around a Ginzburg-Landau theory, this article presents the role of magnetic field on the specific heat near the antiferromagnetic superconductor phase to normal state phase transition in rare-earth superconductors. The magnetic specific heat is calculated both at the antiferromagnetic superconductor phase and normal state. The qualitative agreement between theory and experiment is discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀土超导体中反铁磁超导体相变附近的磁比热
稀土超导体中反铁磁性的存在表现出各种新的物理现象。实验强调了反铁磁性超导体中的磁比热异常。本文以Ginzburg-Landau理论为基础,介绍了磁场对稀土超导体中反铁磁超导体相变到常态相变附近比热的影响。计算了反铁磁超导体相和正常态的磁比热。讨论了理论与实验之间的定性一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
期刊最新文献
Calorimetric Investigation of Magnetic Transitions in GdPdAl and TbPdAl Structural, Magnetocaloric Effect and Critical Phenomena Studies of La0.8Na0.2Mn0.94Bi0.06O3 Synthesized by Sol–gel Technique Field-Induced Multistate Magnetization Switching in Ferromagnetic Nanowire with Parallel Anti-dots for Memristor Applications Structural, Optoelectronic, Magnetic, and Thermoelectric Properties of Titanium Ruthenate Quadruple Perovskites: A First Principle Investigation Structural, Morphological, Electrical Resistivity, and Temperature-dependent Magnetic Property of Single-layered Amorphous Fe70Co15Zr7B5Cu3 HITPERM Films: The Effect of Thickness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1