Improving the Material Quality of GaAs Grown on the c-Plane Sapphire by Molecular Beam Epitaxy to Achieve Room-Temperature Photoluminescence

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2023-09-18 DOI:10.1021/acs.cgd.3c00792
Rahul Kumar*, Samir K. Saha, Andrian Kuchuk, Fernando Maia de Oliveira, Krista R. Khiangte, Shui-Qing Yu, Yuriy I. Mazur and Gregory J. Salamo, 
{"title":"Improving the Material Quality of GaAs Grown on the c-Plane Sapphire by Molecular Beam Epitaxy to Achieve Room-Temperature Photoluminescence","authors":"Rahul Kumar*,&nbsp;Samir K. Saha,&nbsp;Andrian Kuchuk,&nbsp;Fernando Maia de Oliveira,&nbsp;Krista R. Khiangte,&nbsp;Shui-Qing Yu,&nbsp;Yuriy I. Mazur and Gregory J. Salamo,&nbsp;","doi":"10.1021/acs.cgd.3c00792","DOIUrl":null,"url":null,"abstract":"<p >High-quality GaAs on the c-plane sapphire has been achieved by employing a two-step growth technique, multiple annealing, and an AlAs nucleation layer using molecular beam epitaxy (MBE). The effect of growth parameters, namely, growth temperature, As<sub>2</sub> flux, and low-temperature layer growth temperature (LTLGT) in two-step growth have been investigated. In all of the grown samples, the epitaxial orientation of the film is GaAs (111)A. Unlike the homoepitaxial GaAs (111)A MBE growth, where increasing the As<sub>2</sub> flux improves the film quality, here the lowest As<sub>2</sub> flux resulted in the best film quality. Very low LTLGT resulted in highly twinned material and film surface with many pits. Growth temperature also plays an important role, as seen by the exceptional structural and optical properties of samples grown at 650 °C, but at the cost of the rough film surface. We have observed low-temperature photoluminescence (PL) for all of the samples. However, for the first time, to the best of our knowledge, room-temperature PL (RT-PL) has been demonstrated from a heteroepitaxial GaAs (111)A film. This result is important because RT-PL from the epitaxial GaAs/c-plane sapphire will lead to the fabrication of GaAs laser on sapphire, which is an important functionality to realize photonic circuits on the sapphire platform.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"23 10","pages":"7385–7393"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.3c00792","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality GaAs on the c-plane sapphire has been achieved by employing a two-step growth technique, multiple annealing, and an AlAs nucleation layer using molecular beam epitaxy (MBE). The effect of growth parameters, namely, growth temperature, As2 flux, and low-temperature layer growth temperature (LTLGT) in two-step growth have been investigated. In all of the grown samples, the epitaxial orientation of the film is GaAs (111)A. Unlike the homoepitaxial GaAs (111)A MBE growth, where increasing the As2 flux improves the film quality, here the lowest As2 flux resulted in the best film quality. Very low LTLGT resulted in highly twinned material and film surface with many pits. Growth temperature also plays an important role, as seen by the exceptional structural and optical properties of samples grown at 650 °C, but at the cost of the rough film surface. We have observed low-temperature photoluminescence (PL) for all of the samples. However, for the first time, to the best of our knowledge, room-temperature PL (RT-PL) has been demonstrated from a heteroepitaxial GaAs (111)A film. This result is important because RT-PL from the epitaxial GaAs/c-plane sapphire will lead to the fabrication of GaAs laser on sapphire, which is an important functionality to realize photonic circuits on the sapphire platform.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分子束外延法改善c面蓝宝石生长GaAs材料质量实现室温光致发光
通过采用两步生长技术、多次退火和使用分子束外延(MBE)的AlAs成核层,在c面蓝宝石上实现了高质量的GaAs。研究了生长参数,即生长温度、As2通量和低温层生长温度(LTLGT)对两步生长的影响。在所有生长的样品中,膜的外延取向为GaAs(111)A。与均外延GaAs(111)A MBE生长不同,其中增加As2通量提高了膜质量,这里最低的As2通量导致最佳的膜质量。非常低的LTLGT导致高度孪晶的材料和具有许多凹坑的膜表面。生长温度也起着重要作用,在650°C下生长的样品具有特殊的结构和光学性能,但代价是薄膜表面粗糙。我们已经观察到所有样品的低温光致发光(PL)。然而,据我们所知,首次从异质外延GaAs(111)a膜中证明了室温PL(RT-PL)。这一结果很重要,因为外延GaAs/c平面蓝宝石的RT-PL将导致在蓝宝石上制造GaAs激光器,这是在蓝宝石平台上实现光子电路的重要功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Bulk Crystal Growth and Single-Crystal-to-Single-Crystal Phase Transitions in the Averievite CsClCu5V2O10 Dirty Nucleation of Salicylic Acid Using Chemical Substitution to Engineer Photomechanical Cinnamalmalononitrile Crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1