Meiling Shen , Lingfeng Li , Yue Li , Xi Gu , Longhui Bai , Chengfeng Xia , Wenyong Xiong , Zhili Zuo
{"title":"Discovery of potential novel TRPC5 inhibitors by virtual screening and bioassay","authors":"Meiling Shen , Lingfeng Li , Yue Li , Xi Gu , Longhui Bai , Chengfeng Xia , Wenyong Xiong , Zhili Zuo","doi":"10.1016/j.bmc.2023.117477","DOIUrl":null,"url":null,"abstract":"<div><p>The transient receptor potential canonical channel 5 (TRPC5), a member of the TRPC family, plays a crucial role in the regulation of various physiological activities and diseases, including those related to the central nervous system, cardiovascular system, kidney, and cancer. As a nonselective cation channel, TRPC5 mainly controls the influx of extracellular Ca<sup>2+</sup> into cells, thereby modulating cellular depolarization and intracellular ion concentration. Inhibition of TRPC5 by small molecules presents a promising approach for the treatment of TRPC5-associated diseases. In this study, we conducted a comprehensive virtual screening of more than 1.5 million molecules from the Chemdiv database (<span>https://www.chemdiv.com</span><svg><path></path></svg>) to identify potential inhibitors of hTRPC5, utilizing the published structures and binding sites of hTRPC5 as a basis. Lipinski's rule, Veber's rule, PAINS filters, pharmacophore analysis, molecular docking, ADMET evaluation and cluster analysis methods were applied for the screening. From this rigorous screening process, 18 candidates exhibiting higher affinities to hTRPC5 were subsequently evaluated for their inhibitory effects on Ca<sup>2+</sup> influx using a fluorescence-based assay. Notably, two molecules, namely SML-1 and SML-13, demonstrated significant inhibition of intracellular Ca<sup>2+</sup> levels in hTRPC5-overexpressing HEK 293T cells, with IC<sub>50</sub> values of 10.2 μM and 10.3 μM, respectively. These findings highlight SML-1 and SML-13 as potential lead molecules for the development of therapeutics targeting hTRPC5 and its associated physiological activities and diseases.</p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"94 ","pages":"Article 117477"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089623003255","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transient receptor potential canonical channel 5 (TRPC5), a member of the TRPC family, plays a crucial role in the regulation of various physiological activities and diseases, including those related to the central nervous system, cardiovascular system, kidney, and cancer. As a nonselective cation channel, TRPC5 mainly controls the influx of extracellular Ca2+ into cells, thereby modulating cellular depolarization and intracellular ion concentration. Inhibition of TRPC5 by small molecules presents a promising approach for the treatment of TRPC5-associated diseases. In this study, we conducted a comprehensive virtual screening of more than 1.5 million molecules from the Chemdiv database (https://www.chemdiv.com) to identify potential inhibitors of hTRPC5, utilizing the published structures and binding sites of hTRPC5 as a basis. Lipinski's rule, Veber's rule, PAINS filters, pharmacophore analysis, molecular docking, ADMET evaluation and cluster analysis methods were applied for the screening. From this rigorous screening process, 18 candidates exhibiting higher affinities to hTRPC5 were subsequently evaluated for their inhibitory effects on Ca2+ influx using a fluorescence-based assay. Notably, two molecules, namely SML-1 and SML-13, demonstrated significant inhibition of intracellular Ca2+ levels in hTRPC5-overexpressing HEK 293T cells, with IC50 values of 10.2 μM and 10.3 μM, respectively. These findings highlight SML-1 and SML-13 as potential lead molecules for the development of therapeutics targeting hTRPC5 and its associated physiological activities and diseases.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.