Yuyu Wang, Jianjiang Huang, Fang Zhang, Keli Shen, Bin Qiu
{"title":"Knock-down of IGFBP2 ameliorates lung fibrosis and inflammation in rats with severe pneumonia through STAT3 pathway.","authors":"Yuyu Wang, Jianjiang Huang, Fang Zhang, Keli Shen, Bin Qiu","doi":"10.1080/08977194.2023.2259497","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To observe the mechanism of IGFBP2 knock-down in improving lung fibrosis and inflammation through STAT3 pathway in rats with severe pneumonia.</p><p><strong>Materials and methods: </strong>First, SP rat model was established. Then rats were divided into the Control group, the SP group, the SP + Lv-vector shRNA group, the SP + Lv-IGFBP2 shRNA group, the SP + Lv-vector group, and the SP + Lv-IGFBP2 group. The mRNA and protein levels of IGFBP2, NOS, CD206 and Arg 1 were detected by RT-qPCR and Western blot. IHC was used to check the positive expression of IGFBP2 and MCP1. A fully automated blood gas analyzer was used to detected PaCO<sub>2</sub>, CO<sub>2</sub> content, PaO2 and SaO2. HE and Masson staining were performed to observe the lung tissue injury and collagen deposition of rats in each group. ELISA assays were used to calculate the levels of inflammatory factors IL-1β, IL-6, TNF-α, IL-4, and IL-10. Flow cytometry was conducted to acquire the ratio of M1-type AMs and M2-type AMs.</p><p><strong>Results: </strong>Compared with the Control group, IGFBP2, iNOS, CD206, and Arg1 mRNA and protein expression levels, IGFBP2 and MCP1 positive expressions, PaCO<sub>2</sub>, p-STAT3/STAT3, p-JAK2/JAK2, IL-1β, IL-6, and TNF-α levels, the number of AMs and neutrophils, the proportion of M1 type AMs and the expressions of α-SMA, Collagen-I, Collagen III, and Fibronectin were significantly increased in SP rats <i>(p</i> < 0.05), while PaCO<sub>2</sub>, CO<sub>2</sub>, and SaO<sub>2</sub>, IL-4 and IL-10 levels, and the proportion of M2 type AMs decreased (<i>p</i> < 0.05). However, the knockdown of IGFBP2 reversed the above index trends.</p><p><strong>Conclusion: </strong>Knock-down of IGFBP2 ameliorated lung injury in SP rats, inhibited inflammation and pulmonary fibrosis, and promoted M2-type transformation of AMs by activating the STAT3 pathway.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":" ","pages":"210-220"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Growth factors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08977194.2023.2259497","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To observe the mechanism of IGFBP2 knock-down in improving lung fibrosis and inflammation through STAT3 pathway in rats with severe pneumonia.
Materials and methods: First, SP rat model was established. Then rats were divided into the Control group, the SP group, the SP + Lv-vector shRNA group, the SP + Lv-IGFBP2 shRNA group, the SP + Lv-vector group, and the SP + Lv-IGFBP2 group. The mRNA and protein levels of IGFBP2, NOS, CD206 and Arg 1 were detected by RT-qPCR and Western blot. IHC was used to check the positive expression of IGFBP2 and MCP1. A fully automated blood gas analyzer was used to detected PaCO2, CO2 content, PaO2 and SaO2. HE and Masson staining were performed to observe the lung tissue injury and collagen deposition of rats in each group. ELISA assays were used to calculate the levels of inflammatory factors IL-1β, IL-6, TNF-α, IL-4, and IL-10. Flow cytometry was conducted to acquire the ratio of M1-type AMs and M2-type AMs.
Results: Compared with the Control group, IGFBP2, iNOS, CD206, and Arg1 mRNA and protein expression levels, IGFBP2 and MCP1 positive expressions, PaCO2, p-STAT3/STAT3, p-JAK2/JAK2, IL-1β, IL-6, and TNF-α levels, the number of AMs and neutrophils, the proportion of M1 type AMs and the expressions of α-SMA, Collagen-I, Collagen III, and Fibronectin were significantly increased in SP rats (p < 0.05), while PaCO2, CO2, and SaO2, IL-4 and IL-10 levels, and the proportion of M2 type AMs decreased (p < 0.05). However, the knockdown of IGFBP2 reversed the above index trends.
Conclusion: Knock-down of IGFBP2 ameliorated lung injury in SP rats, inhibited inflammation and pulmonary fibrosis, and promoted M2-type transformation of AMs by activating the STAT3 pathway.
期刊介绍:
Growth Factors is an international and interdisciplinary vehicle publishing new knowledge and findings on the regulators of cell proliferation, differentiation and survival. The Journal will publish research papers, short communications and reviews on current developments in cell biology, biochemistry, physiology or pharmacology of growth factors, cytokines or hormones which improve our understanding of biology or medicine. Among the various fields of study topics of particular interest include: •Stem cell biology •Growth factor physiology •Structure-activity relationships •Drug development studies •Clinical applications