Reaction Induced Conformational Change in Polyindole: Polyindole/PVA Film as Biomimetic Sensors of Temperature and Electrical Energetic Conditions

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - An Asian Journal Pub Date : 2023-10-03 DOI:10.1002/asia.202300742
Lijin Rajan, Aranhikundan Shabeeba, Madari Palliyalil Sidheekha, Dr. Yahya A. Ismail
{"title":"Reaction Induced Conformational Change in Polyindole: Polyindole/PVA Film as Biomimetic Sensors of Temperature and Electrical Energetic Conditions","authors":"Lijin Rajan,&nbsp;Aranhikundan Shabeeba,&nbsp;Madari Palliyalil Sidheekha,&nbsp;Dr. Yahya A. Ismail","doi":"10.1002/asia.202300742","DOIUrl":null,"url":null,"abstract":"<p>Conducting polymers can mimic the sensing characteristics of biological muscles through utilizing their unique electrochemical reactions. As these reactions occur, alterations in composition prompt changes in biomimetic properties, such as shifts in volume, brought about by the insertion of anions and solvent molecules, resulting in conformational movements. Similar to biological muscles, these electrochemical reaction senses the working variables affecting the reaction rate, through the same two connecting wires. The influence of working temperature and electrical energetic condition on the conformational movements of polyindole manifested as the cooperative actuation of the polymer chain is verified here using a polyindole-coated polyvinyl alcohol (PIN/PVA) film. Cyclic voltammetric (CV) studies revealed that the extent of reaction of polyindole varies linearly with temperature and scan rate. The logarithmic dependence of redox charge obtained from coulovoltammogram with inverse of temperature further proved the temperature sensing characteristics and the influence of temperature on the cooperative actuation of the film. The conformational relaxation increases as the temperature increases through hosting higher number of counter anions with the solvent molecule. The extension of the redox reaction was found to decrease as the scan rate increases. The double logarithmic relation between the consumed redox charge and the scan rate has proved that the electrical energetic condition can influence the conformational movement in a reversible manner. It is also verified from Chronopotentiometric (CP) studies that the consumed electrical energy during the reaction varies linearly with the change in temperature. The results suggest that the PIN/PVA film can act as a biomimetic macro molecular sensor of working temperature and electrical energetic condition as biological muscles do.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":"18 22","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202300742","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conducting polymers can mimic the sensing characteristics of biological muscles through utilizing their unique electrochemical reactions. As these reactions occur, alterations in composition prompt changes in biomimetic properties, such as shifts in volume, brought about by the insertion of anions and solvent molecules, resulting in conformational movements. Similar to biological muscles, these electrochemical reaction senses the working variables affecting the reaction rate, through the same two connecting wires. The influence of working temperature and electrical energetic condition on the conformational movements of polyindole manifested as the cooperative actuation of the polymer chain is verified here using a polyindole-coated polyvinyl alcohol (PIN/PVA) film. Cyclic voltammetric (CV) studies revealed that the extent of reaction of polyindole varies linearly with temperature and scan rate. The logarithmic dependence of redox charge obtained from coulovoltammogram with inverse of temperature further proved the temperature sensing characteristics and the influence of temperature on the cooperative actuation of the film. The conformational relaxation increases as the temperature increases through hosting higher number of counter anions with the solvent molecule. The extension of the redox reaction was found to decrease as the scan rate increases. The double logarithmic relation between the consumed redox charge and the scan rate has proved that the electrical energetic condition can influence the conformational movement in a reversible manner. It is also verified from Chronopotentiometric (CP) studies that the consumed electrical energy during the reaction varies linearly with the change in temperature. The results suggest that the PIN/PVA film can act as a biomimetic macro molecular sensor of working temperature and electrical energetic condition as biological muscles do.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反应诱导聚吲哚的构象变化:聚吲哚/PVA膜作为温度和电能条件的仿生传感器。
用聚吲哚包覆的聚乙烯醇(PIN/PVA)膜验证了环境温度和电能条件对聚吲哚构象运动(协同致动)的影响。计时电位研究表明,反应过程中消耗的电能随工作温度的变化呈线性变化。温度对聚合物链可逆构象运动的影响与反应过程中消耗的电荷有关。由库仑伏安图获得的可逆氧化还原电荷与温度倒数的对数依赖性进一步证明了温度传感特性以及温度对PIN/PVA膜协同致动的影响。构象弛豫随着温度的升高而增加,因为溶剂分子中含有更多的反阴离子。发现氧化还原反应的延长或电荷消耗随着扫描速率的增加而减少。消耗的氧化还原电荷与扫描速率之间的双对数关系证明,电能条件可以以可逆的方式影响氧化还原反应的构象运动或延伸。结果表明,PIN/PVA薄膜可以像生物肌肉一样,作为工作温度和电能状态的仿生大分子传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
期刊最新文献
A Fluorescent Covalent Organic Cage for Ultrafast Detection of Picric Acid and HCl Vapor Sensing. Mixed Perovskite Phases of BaTiO3/BaTi5O11 for efficient Electrochemical Reduction of CO2 to CO. Molecular Assembly in Optical Cavities. Transition Metal Anchored Novel Holey Boron Nitride Analogues as Single-Atom Catalysts for the Hydrogen Evolution Reaction. Anion Coordination Chemistry: An Expedition Towards Designing of Functional Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1