Machine Learning for the Prediction of Survival Post-Allogeneic Hematopoietic Cell Transplantation: A Single-Center Experience.

IF 1.7 4区 医学 Q3 HEMATOLOGY Acta Haematologica Pub Date : 2024-01-01 Epub Date: 2023-09-28 DOI:10.1159/000533665
Hamed Shourabizadeh, Dionne M Aleman, Louis-Martin Rousseau, Arjun D Law, Auro Viswabandya, Fotios V Michelis
{"title":"Machine Learning for the Prediction of Survival Post-Allogeneic Hematopoietic Cell Transplantation: A Single-Center Experience.","authors":"Hamed Shourabizadeh, Dionne M Aleman, Louis-Martin Rousseau, Arjun D Law, Auro Viswabandya, Fotios V Michelis","doi":"10.1159/000533665","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Prediction of outcomes following allogeneic hematopoietic cell transplantation (HCT) remains a major challenge. Machine learning (ML) is a computational procedure that may facilitate the generation of HCT prediction models. We sought to investigate the prognostic potential of multiple ML algorithms when applied to a large single-center allogeneic HCT database.</p><p><strong>Methods: </strong>Our registry included 2,697 patients that underwent allogeneic HCT from January 1976 to December 2017. 45 pretransplant baseline variables were included in the predictive assessment of each ML algorithm on overall survival (OS) as determined by area under the curve (AUC). Pretransplant variables used in the EBMT ML study (Shouval et al., 2015) were used as a benchmark for comparison.</p><p><strong>Results: </strong>On the entire dataset, the random forest (RF) algorithm performed best (AUC 0.71 ± 0.04) compared to the second-best model, logistic regression (LR) (AUC = 0.69 ± 0.04) (p &lt; 0.001). Both algorithms demonstrated improved AUC scores using all 45 variables compared to the limited variables examined by the EBMT study. Survival at 100 days post-HCT using RF on the full dataset discriminated patients into different prognostic groups with different 2-year OS (p &lt; 0.0001). We then examined the ML methods that allow for significant individual variable identification, including LR and RF, and identified matched related donors (HR = 0.49, p &lt; 0.0001), increasing TBI dose (HR = 1.60, p = 0.006), increasing recipient age (HR = 1.92, p &lt; 0.0001), higher baseline Hb (HR = 0.59, p = 0.0002), and increased baseline FEV1 (HR = 0.73, p = 0.02), among others.</p><p><strong>Conclusion: </strong>The application of multiple ML techniques on single-center allogeneic HCT databases warrants further investigation and may provide a useful tool to identify variables with prognostic potential.</p>","PeriodicalId":6981,"journal":{"name":"Acta Haematologica","volume":" ","pages":"280-291"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000533665","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Prediction of outcomes following allogeneic hematopoietic cell transplantation (HCT) remains a major challenge. Machine learning (ML) is a computational procedure that may facilitate the generation of HCT prediction models. We sought to investigate the prognostic potential of multiple ML algorithms when applied to a large single-center allogeneic HCT database.

Methods: Our registry included 2,697 patients that underwent allogeneic HCT from January 1976 to December 2017. 45 pretransplant baseline variables were included in the predictive assessment of each ML algorithm on overall survival (OS) as determined by area under the curve (AUC). Pretransplant variables used in the EBMT ML study (Shouval et al., 2015) were used as a benchmark for comparison.

Results: On the entire dataset, the random forest (RF) algorithm performed best (AUC 0.71 ± 0.04) compared to the second-best model, logistic regression (LR) (AUC = 0.69 ± 0.04) (p < 0.001). Both algorithms demonstrated improved AUC scores using all 45 variables compared to the limited variables examined by the EBMT study. Survival at 100 days post-HCT using RF on the full dataset discriminated patients into different prognostic groups with different 2-year OS (p < 0.0001). We then examined the ML methods that allow for significant individual variable identification, including LR and RF, and identified matched related donors (HR = 0.49, p < 0.0001), increasing TBI dose (HR = 1.60, p = 0.006), increasing recipient age (HR = 1.92, p < 0.0001), higher baseline Hb (HR = 0.59, p = 0.0002), and increased baseline FEV1 (HR = 0.73, p = 0.02), among others.

Conclusion: The application of multiple ML techniques on single-center allogeneic HCT databases warrants further investigation and may provide a useful tool to identify variables with prognostic potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习预测异基因造血细胞移植后存活率:单中心经验。
引言:预测异基因造血细胞移植(HCT)后的结果仍然是一个主要挑战。机器学习(ML)是一种计算过程,可以促进HCT预测模型的生成。我们试图研究多个ML算法在应用于大型单中心同种异体HCT数据库时的预后潜力。方法:我们的注册包括1976年1月至2017年12月接受同种异体HCT的2697名患者,在通过曲线下面积(AUC)确定的每种ML算法对总生存率(OS)的预测评估中包括45个移植前基线变量。EBMT机器学习研究中使用的移植前变量(Shouval等人,2015)被用作比较的基准。结果:在整个数据集上,随机森林(RF)算法与第二好模型逻辑回归(LR)(AUC=0.69±0.04)相比表现最好(AUC 0.71±0.04)(P结论:多ML技术在单中心异基因HCT数据库上的应用值得进一步研究,并可能为识别具有预后潜力的变量提供有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Haematologica
Acta Haematologica 医学-血液学
CiteScore
4.90
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: ''Acta Haematologica'' is a well-established and internationally recognized clinically-oriented journal featuring balanced, wide-ranging coverage of current hematology research. A wealth of information on such problems as anemia, leukemia, lymphoma, multiple myeloma, hereditary disorders, blood coagulation, growth factors, hematopoiesis and differentiation is contained in first-rate basic and clinical papers some of which are accompanied by editorial comments by eminent experts. These are supplemented by short state-of-the-art communications, reviews and correspondence as well as occasional special issues devoted to ‘hot topics’ in hematology. These will keep the practicing hematologist well informed of the new developments in the field.
期刊最新文献
Clinical Challenges in Treating Cancer Associated Thrombosis: A Clinically Oriented Review. "Real-life" Data of Zanubrutinib in Patients with Waldenström Macroglobulinemia - A Multi-Center Retrospective Study. Haploidentical Allogeneic Hematopoietic Cell Transplantation following Two Courses of Venetoclax and Azacytidine Therapy in Patients over 55 Years Old with Acute Myelogenous Leukemia: Comment. Coronary Artery Disease and Microvascular Ischemia in Patients with Cardiac Amyloidosis. Historical Perspective of Allogeneic Hematopoietic Stem Cell Transplantation for Multiple Myeloma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1