Accuracy and precision of fixed and random effects in meta-analyses of randomized control trials for continuous outcomes

IF 5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Research Synthesis Methods Pub Date : 2023-09-26 DOI:10.1002/jrsm.1673
Timo Gnambs, Ulrich Schroeders
{"title":"Accuracy and precision of fixed and random effects in meta-analyses of randomized control trials for continuous outcomes","authors":"Timo Gnambs,&nbsp;Ulrich Schroeders","doi":"10.1002/jrsm.1673","DOIUrl":null,"url":null,"abstract":"<p>Meta-analyses of treatment effects in randomized control trials are often faced with the problem of missing information required to calculate effect sizes and their sampling variances. Particularly, correlations between pre- and posttest scores are frequently not available. As an ad-hoc solution, researchers impute a constant value for the missing correlation. As an alternative, we propose adopting a multivariate meta-regression approach that models independent group effect sizes and accounts for the dependency structure using robust variance estimation or three-level modeling. A comprehensive simulation study mimicking realistic conditions of meta-analyses in clinical and educational psychology suggested that imputing a fixed correlation 0.8 or adopting a multivariate meta-regression with robust variance estimation work well for estimating the pooled effect but lead to slightly distorted between-study heterogeneity estimates. In contrast, three-level meta-regressions resulted in largely unbiased fixed effects but more inconsistent prediction intervals. Based on these results recommendations for meta-analytic practice and future meta-analytic developments are provided.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 1","pages":"86-106"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1673","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1673","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Meta-analyses of treatment effects in randomized control trials are often faced with the problem of missing information required to calculate effect sizes and their sampling variances. Particularly, correlations between pre- and posttest scores are frequently not available. As an ad-hoc solution, researchers impute a constant value for the missing correlation. As an alternative, we propose adopting a multivariate meta-regression approach that models independent group effect sizes and accounts for the dependency structure using robust variance estimation or three-level modeling. A comprehensive simulation study mimicking realistic conditions of meta-analyses in clinical and educational psychology suggested that imputing a fixed correlation 0.8 or adopting a multivariate meta-regression with robust variance estimation work well for estimating the pooled effect but lead to slightly distorted between-study heterogeneity estimates. In contrast, three-level meta-regressions resulted in largely unbiased fixed effects but more inconsistent prediction intervals. Based on these results recommendations for meta-analytic practice and future meta-analytic developments are provided.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机对照试验连续结果荟萃分析中固定和随机效应的准确性和准确性。
随机对照试验中治疗效果的荟萃分析经常面临计算效果大小及其抽样方差所需信息缺失的问题。特别是,测试前和测试后得分之间的相关性经常不可用。作为一种特殊的解决方案,研究人员为缺失的相关性估算一个常数值。作为替代方案,我们建议采用多元元回归方法,该方法对独立的群体效应大小进行建模,并使用稳健方差估计或三级建模来解释依赖结构。一项模拟临床和教育心理学中荟萃分析现实条件的综合模拟研究表明,输入固定相关性0.8或采用具有稳健方差估计的多元元回归可以很好地估计合并效应,但会导致研究之间的异质性估计略有失真。相比之下,三级元回归在很大程度上产生了无偏的固定效应,但预测区间更不一致。基于这些结果,为元分析实践和未来的元分析发展提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research Synthesis Methods
Research Synthesis Methods MATHEMATICAL & COMPUTATIONAL BIOLOGYMULTID-MULTIDISCIPLINARY SCIENCES
CiteScore
16.90
自引率
3.10%
发文量
75
期刊介绍: Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines. Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines. By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.
期刊最新文献
Issue Information A tutorial on aggregating evidence from conceptual replication studies using the product Bayes factor Evolving use of the Cochrane Risk of Bias 2 tool in biomedical systematic reviews Exploring methodological approaches used in network meta-analysis of psychological interventions: A scoping review An evaluation of the performance of stopping rules in AI-aided screening for psychological meta-analytical research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1