Nak Song Sung, Sun Ho Uhm, Hyun Bae Kang, Nam Seob Lee, Young-Gil Jeong, Do Kyung Kim, Nak-Yun Sung, Dong-Sub Kim, Young Choon Yoo, Seung Yun Han
{"title":"<i>Rubus fruticosus</i> leaf extract inhibits vascular dementia-induced memory impairment and neuronal loss by attenuating neuroinflammation.","authors":"Nak Song Sung, Sun Ho Uhm, Hyun Bae Kang, Nam Seob Lee, Young-Gil Jeong, Do Kyung Kim, Nak-Yun Sung, Dong-Sub Kim, Young Choon Yoo, Seung Yun Han","doi":"10.5115/acb.23.195","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular dementia (VaD) is characterized by progressive memory impairment, which is associated with microglia-mediated neuroinflammation. Polyphenol-rich natural plants, which possess anti-inflammatory activities, have attracted scientific interest worldwide. This study investigated whether <i>Rubus fruticosus</i> leaf extract (RFLE) can attenuate VaD. Sprague-Dawley rats were separated into five groups: SO, sham-operated and treated with vehicle; OP, operated and treated with vehicle; RFLE-L, operated and treated with low dose (30 mg/kg) of RFLE; RFLE-M, operated and treated with medium dose (60 mg/kg) of RFLE; and RFLE-H, operated and treated with high dose (90 mg/kg) of RFLE. Bilateral common carotid artery and hypotension were used as a modeling procedure, and the RFLE were intraorally administered for 5 days (preoperative 2 and postoperative 3 days). The rats then underwent memory tests including the novel object recognition, Y-maze, Barnes maze, and passive avoidance tests, and neuronal viability and neuroinflammation were quantified in their hippocampi. The results showed that the OP group exhibited VaD-associated memory deficits, neuronal death, and microglial activation in hippocampi, while the RFLE-treated groups showed significant attenuation in all above parameters. Next, using BV-2 microglial cells challenged with lipopolysaccharide (LPS), we evaluated the effects of RFLE in dynamics of proinflammatory mediators and the upstream signaling pathway. RFLE pretreatment significantly inhibited the LPS-induced release of nitric oxide, TNF-α, and IL-6 and upregulation of the MAPKs/NF-κB/iNOS pathway. Collectively, we suggest that RFLE can attenuate the histologic alterations and memory deficits accompanied by VaD, and these roles are, partly due to the attenuation of microglial activation.</p>","PeriodicalId":7831,"journal":{"name":"Anatomy & Cell Biology","volume":" ","pages":"494-507"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10714077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomy & Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5115/acb.23.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular dementia (VaD) is characterized by progressive memory impairment, which is associated with microglia-mediated neuroinflammation. Polyphenol-rich natural plants, which possess anti-inflammatory activities, have attracted scientific interest worldwide. This study investigated whether Rubus fruticosus leaf extract (RFLE) can attenuate VaD. Sprague-Dawley rats were separated into five groups: SO, sham-operated and treated with vehicle; OP, operated and treated with vehicle; RFLE-L, operated and treated with low dose (30 mg/kg) of RFLE; RFLE-M, operated and treated with medium dose (60 mg/kg) of RFLE; and RFLE-H, operated and treated with high dose (90 mg/kg) of RFLE. Bilateral common carotid artery and hypotension were used as a modeling procedure, and the RFLE were intraorally administered for 5 days (preoperative 2 and postoperative 3 days). The rats then underwent memory tests including the novel object recognition, Y-maze, Barnes maze, and passive avoidance tests, and neuronal viability and neuroinflammation were quantified in their hippocampi. The results showed that the OP group exhibited VaD-associated memory deficits, neuronal death, and microglial activation in hippocampi, while the RFLE-treated groups showed significant attenuation in all above parameters. Next, using BV-2 microglial cells challenged with lipopolysaccharide (LPS), we evaluated the effects of RFLE in dynamics of proinflammatory mediators and the upstream signaling pathway. RFLE pretreatment significantly inhibited the LPS-induced release of nitric oxide, TNF-α, and IL-6 and upregulation of the MAPKs/NF-κB/iNOS pathway. Collectively, we suggest that RFLE can attenuate the histologic alterations and memory deficits accompanied by VaD, and these roles are, partly due to the attenuation of microglial activation.