Large language models in radiology: fundamentals, applications, ethical considerations, risks, and future directions.

IF 1.4 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Diagnostic and interventional radiology Pub Date : 2024-03-06 Epub Date: 2023-10-03 DOI:10.4274/dir.2023.232417
Tugba Akinci D'Antonoli, Arnaldo Stanzione, Christian Bluethgen, Federica Vernuccio, Lorenzo Ugga, Michail E Klontzas, Renato Cuocolo, Roberto Cannella, Burak Koçak
{"title":"Large language models in radiology: fundamentals, applications, ethical considerations, risks, and future directions.","authors":"Tugba Akinci D'Antonoli, Arnaldo Stanzione, Christian Bluethgen, Federica Vernuccio, Lorenzo Ugga, Michail E Klontzas, Renato Cuocolo, Roberto Cannella, Burak Koçak","doi":"10.4274/dir.2023.232417","DOIUrl":null,"url":null,"abstract":"<p><p>With the advent of large language models (LLMs), the artificial intelligence revolution in medicine and radiology is now more tangible than ever. Every day, an increasingly large number of articles are published that utilize LLMs in radiology. To adopt and safely implement this new technology in the field, radiologists should be familiar with its key concepts, understand at least the technical basics, and be aware of the potential risks and ethical considerations that come with it. In this review article, the authors provide an overview of the LLMs that might be relevant to the radiology community and include a brief discussion of their short history, technical basics, ChatGPT, prompt engineering, potential applications in medicine and radiology, advantages, disadvantages and risks, ethical and regulatory considerations, and future directions.</p>","PeriodicalId":11341,"journal":{"name":"Diagnostic and interventional radiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916534/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and interventional radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2023.232417","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of large language models (LLMs), the artificial intelligence revolution in medicine and radiology is now more tangible than ever. Every day, an increasingly large number of articles are published that utilize LLMs in radiology. To adopt and safely implement this new technology in the field, radiologists should be familiar with its key concepts, understand at least the technical basics, and be aware of the potential risks and ethical considerations that come with it. In this review article, the authors provide an overview of the LLMs that might be relevant to the radiology community and include a brief discussion of their short history, technical basics, ChatGPT, prompt engineering, potential applications in medicine and radiology, advantages, disadvantages and risks, ethical and regulatory considerations, and future directions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放射学中的大型语言模型:基础、应用、伦理考虑、风险和未来方向。
随着大型语言模型(LLM)的出现,医学和放射学领域的人工智能革命比以往任何时候都更加明显。每天都有越来越多的文章发表在放射学中使用LLM。为了在该领域采用并安全地实施这项新技术,放射科医生应该熟悉其关键概念,至少了解技术基础,并意识到随之而来的潜在风险和伦理考虑。在这篇综述文章中,作者概述了可能与放射学界相关的LLM,并简要讨论了它们的短暂历史、技术基础、ChatGPT、即时工程、在医学和放射学中的潜在应用、优点、缺点和风险、伦理和监管考虑以及未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostic and interventional radiology
Diagnostic and interventional radiology Medicine-Radiology, Nuclear Medicine and Imaging
自引率
4.80%
发文量
0
期刊介绍: Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English. The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.
期刊最新文献
Diagnostic value of the flare sign in predicting extracapsular extension in metastatic axillary lymph nodes and nodal status on breast magnetic resonance imaging. Challenges associated with percutaneous nephrostomy in infants Correlation between computed tomography-based body composition parameters and hepatic venous pressure gradient in patients with cirrhosis: a systematic review and meta-analysis Experimental study of a canine model for a newly designed adjustable prefenestration aortic stent graft Pre-procedure 18F-FDG PET/CT imaging improves the performance of CT-guided transthoracic biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1