RBPome identification in egg-cell like callus of Arabidopsis.

IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biological Chemistry Pub Date : 2023-09-29 Print Date: 2023-10-26 DOI:10.1515/hsz-2023-0195
Liping Liu, Jakob Trendel, Guojing Jiang, Yanhui Liu, Astrid Bruckmann, Bernhard Küster, Stefanie Sprunck, Thomas Dresselhaus, Andrea Bleckmann
{"title":"RBPome identification in egg-cell like callus of <i>Arabidopsis</i>.","authors":"Liping Liu, Jakob Trendel, Guojing Jiang, Yanhui Liu, Astrid Bruckmann, Bernhard Küster, Stefanie Sprunck, Thomas Dresselhaus, Andrea Bleckmann","doi":"10.1515/hsz-2023-0195","DOIUrl":null,"url":null,"abstract":"<p><p>RNA binding proteins (RBPs) have multiple and essential roles in transcriptional and posttranscriptional regulation of gene expression in all living organisms. Their biochemical identification in the proteome of a given cell or tissue requires significant protein amounts, which limits studies in rare and highly specialized cells. As a consequence, we know almost nothing about the role(s) of RBPs in reproductive processes such as egg cell development, fertilization and early embryogenesis in flowering plants. To systematically identify the RBPome of egg cells in the model plant Arabidopsis, we performed RNA interactome capture (RIC) experiments using the egg cell-like RKD2-callus and were able to identify 728 proteins associated with poly(A<sup>+</sup>)-RNA. Transcripts for 97 % of identified proteins could be verified in the egg cell transcriptome. 46 % of identified proteins can be associated with the RNA life cycle. Proteins involved in mRNA binding, RNA processing and metabolism are highly enriched. Compared with the few available RBPome datasets of vegetative plant tissues, we identified 475 egg cell-enriched RBPs, which will now serve as a resource to study RBP function(s) during egg cell development, fertilization and early embryogenesis. First candidates were already identified showing an egg cell-specific expression pattern in ovules.</p>","PeriodicalId":8885,"journal":{"name":"Biological Chemistry","volume":" ","pages":"1137-1149"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/hsz-2023-0195","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/26 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA binding proteins (RBPs) have multiple and essential roles in transcriptional and posttranscriptional regulation of gene expression in all living organisms. Their biochemical identification in the proteome of a given cell or tissue requires significant protein amounts, which limits studies in rare and highly specialized cells. As a consequence, we know almost nothing about the role(s) of RBPs in reproductive processes such as egg cell development, fertilization and early embryogenesis in flowering plants. To systematically identify the RBPome of egg cells in the model plant Arabidopsis, we performed RNA interactome capture (RIC) experiments using the egg cell-like RKD2-callus and were able to identify 728 proteins associated with poly(A+)-RNA. Transcripts for 97 % of identified proteins could be verified in the egg cell transcriptome. 46 % of identified proteins can be associated with the RNA life cycle. Proteins involved in mRNA binding, RNA processing and metabolism are highly enriched. Compared with the few available RBPome datasets of vegetative plant tissues, we identified 475 egg cell-enriched RBPs, which will now serve as a resource to study RBP function(s) during egg cell development, fertilization and early embryogenesis. First candidates were already identified showing an egg cell-specific expression pattern in ovules.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟南芥卵细胞样愈伤组织中RBPome的鉴定。
RNA结合蛋白(RBPs)在所有生物体中对基因表达的转录和转录后调控中具有多种重要作用。它们在特定细胞或组织的蛋白质组中的生物化学鉴定需要大量的蛋白质,这限制了对罕见和高度特化细胞的研究。因此,我们对RBPs在开花植物的卵细胞发育、受精和早期胚胎发生等生殖过程中的作用几乎一无所知。为了系统地鉴定模式植物拟南芥中卵细胞的RBPome,我们使用卵细胞样RKD2愈伤组织进行了RNA相互作用组捕获(RIC)实验,并能够鉴定728种与poly(A+)-RNA相关的蛋白质。97年成绩单 % 可以在卵细胞转录组中验证已鉴定的蛋白质。46 % 已鉴定蛋白质的数量可以与RNA的生命周期相关联。参与mRNA结合、RNA加工和代谢的蛋白质高度富集。与少数可用的营养植物组织RBPome数据集相比,我们鉴定了475个富含卵细胞的RBP,这些RBP现在将作为研究卵细胞发育、受精和早期胚胎发生过程中RBP功能的资源。第一个候选者已经被鉴定出在胚珠中表现出卵细胞特异性表达模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Chemistry
Biological Chemistry 生物-生化与分子生物学
CiteScore
7.20
自引率
0.00%
发文量
63
审稿时长
4-8 weeks
期刊介绍: Biological Chemistry keeps you up-to-date with all new developments in the molecular life sciences. In addition to original research reports, authoritative reviews written by leading researchers in the field keep you informed about the latest advances in the molecular life sciences. Rapid, yet rigorous reviewing ensures fast access to recent research results of exceptional significance in the biological sciences. Papers are published in a "Just Accepted" format within approx.72 hours of acceptance.
期刊最新文献
Bioprospecting hydroxylated chalcones in in vitro model of ischemia-reoxygenation and probing NOX4 interactions via molecular docking. Analysis of kallikrein-related peptidase 7 (KLK7) autolysis reveals novel protease and cytokine substrates. Carnosic acid prevents heat stress-induced oxidative damage by regulating heat-shock proteins and apoptotic proteins in mouse testis. Zinc and copper effect mechanical cell adhesion properties of the amyloid precursor protein. Highlight: young research groups in Germany - 5th edition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1