{"title":"Applying network link prediction in drug discovery: an overview of the literature.","authors":"Jeongtae Son, Dongsup Kim","doi":"10.1080/17460441.2023.2267020","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Network representation can give a holistic view of relationships for biomedical entities through network topology. Link prediction estimates the probability of link formation between the pair of unconnected nodes. In the drug discovery process, the link prediction method not only enables the detection of connectivity patterns but also predicts the effects of one biomedical entity to multiple entities simultaneously and vice versa, which is useful for many applications.</p><p><strong>Areas covered: </strong>The authors provide a comprehensive overview of network link prediction in drug discovery. Link prediction methodologies such as similarity-based approaches, embedding-based approaches, probabilistic model-based approaches, and preprocessing methods are summarized with examples. In addition to describing their properties and limitations, the authors discuss the applications of link prediction in drug discovery based on the relationship between biomedical concepts.</p><p><strong>Expert opinion: </strong>Link prediction is a powerful method to infer the existence of novel relationships in drug discovery. However, link prediction has been hampered by the sparsity of data and the lack of negative links in biomedical networks. With preprocessing to balance positive and negative samples and the collection of more data, the authors believe it is possible to develop more reliable link prediction methods that can become invaluable tools for successful drug discovery.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17460441.2023.2267020","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Network representation can give a holistic view of relationships for biomedical entities through network topology. Link prediction estimates the probability of link formation between the pair of unconnected nodes. In the drug discovery process, the link prediction method not only enables the detection of connectivity patterns but also predicts the effects of one biomedical entity to multiple entities simultaneously and vice versa, which is useful for many applications.
Areas covered: The authors provide a comprehensive overview of network link prediction in drug discovery. Link prediction methodologies such as similarity-based approaches, embedding-based approaches, probabilistic model-based approaches, and preprocessing methods are summarized with examples. In addition to describing their properties and limitations, the authors discuss the applications of link prediction in drug discovery based on the relationship between biomedical concepts.
Expert opinion: Link prediction is a powerful method to infer the existence of novel relationships in drug discovery. However, link prediction has been hampered by the sparsity of data and the lack of negative links in biomedical networks. With preprocessing to balance positive and negative samples and the collection of more data, the authors believe it is possible to develop more reliable link prediction methods that can become invaluable tools for successful drug discovery.
期刊介绍:
Expert Opinion on Drug Discovery (ISSN 1746-0441 [print], 1746-045X [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on novel technologies involved in the drug discovery process, leading to new leads and reduced attrition rates. Each article is structured to incorporate the author’s own expert opinion on the scope for future development.
The Editors welcome:
Reviews covering chemoinformatics; bioinformatics; assay development; novel screening technologies; in vitro/in vivo models; structure-based drug design; systems biology
Drug Case Histories examining the steps involved in the preclinical and clinical development of a particular drug
The audience consists of scientists and managers in the healthcare and pharmaceutical industry, academic pharmaceutical scientists and other closely related professionals looking to enhance the success of their drug candidates through optimisation at the preclinical level.