{"title":"The molecular targets of Kangai injection in gastric cancer by in silico network pharmacology approach and experiment confirmation.","authors":"Yongjun Qiu, Sujun Huang, Minfang Zhu","doi":"10.32725/jab.2023.017","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to identify the phytochemical constituents that could target gastric cancer in Kangai injection using a network pharmacology-based approach.</p><p><strong>Methods: </strong>Protein-protein interactions (PPI), Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted utilizing String and OmicShare tools. In the in vitro experiments, the related mRNA and protein levels were assessed via real-time quantitative polymerase chain reaction and Western blotting, respectively. Cell proliferation was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay.</p><p><strong>Results: </strong>Kangai injection comprises several compounds, which target multiple substrates and pathways related to gastric cancer. The PPI and Gene Ontology analyses revealed that tumor necrosis factor (TNF) was a hub gene. KEGG pathway enrichment analysis indicated that the the TNF pathway was significantly enriched. Kangai injection decreased the mRNA levels of TNFR2, TRAF2, PI3K, AKT, and IκBα and inhibited the phosphorylation of PI3K, AKT, and IκBα phosphorylations. Kangai injection inhibited cell proliferation, while TNFR2 overexpression or treatment with the PI3K activator 740 Y-P partially restored it.</p><p><strong>Conclusion: </strong>Kangai injection operates through multiple targets and pathways in gastric cancer, with the TNFR2/PI3K/AKT/NF-κB pathway playing a crucial role in its mechanism against gastric cancer.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"21 3","pages":"150-159"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2023.017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study aimed to identify the phytochemical constituents that could target gastric cancer in Kangai injection using a network pharmacology-based approach.
Methods: Protein-protein interactions (PPI), Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted utilizing String and OmicShare tools. In the in vitro experiments, the related mRNA and protein levels were assessed via real-time quantitative polymerase chain reaction and Western blotting, respectively. Cell proliferation was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay.
Results: Kangai injection comprises several compounds, which target multiple substrates and pathways related to gastric cancer. The PPI and Gene Ontology analyses revealed that tumor necrosis factor (TNF) was a hub gene. KEGG pathway enrichment analysis indicated that the the TNF pathway was significantly enriched. Kangai injection decreased the mRNA levels of TNFR2, TRAF2, PI3K, AKT, and IκBα and inhibited the phosphorylation of PI3K, AKT, and IκBα phosphorylations. Kangai injection inhibited cell proliferation, while TNFR2 overexpression or treatment with the PI3K activator 740 Y-P partially restored it.
Conclusion: Kangai injection operates through multiple targets and pathways in gastric cancer, with the TNFR2/PI3K/AKT/NF-κB pathway playing a crucial role in its mechanism against gastric cancer.
期刊介绍:
Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines.
Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.