Horizon thermodynamics and cosmological equations: a holographic-like connection between thermostatistical quantities on a cosmological horizon and in the bulk
{"title":"Horizon thermodynamics and cosmological equations: a holographic-like connection between thermostatistical quantities on a cosmological horizon and in the bulk","authors":"Nobuyoshi Komatsu","doi":"10.1140/epjc/s10052-023-11855-7","DOIUrl":null,"url":null,"abstract":"<div><p>Horizon thermodynamics is expected to be related to the effective energy based on the energy density calculated from the Friedmann equation for a Friedmann–Robertson–Walker (FRW) universe. In the present study, the effective energy and thermostatistical quantities on a cosmological horizon are examined to clarify the holographic-like connection between them, with a focus on a de Sitter universe. To this end, the Helmholtz free energy on the horizon is derived from horizon thermodynamics. The free energy is found to be equivalent to the effective energy calculated from the Friedmann equation. This consistency is interpreted as a kind of holographic-like connection. To examine this connection, Padmanabhan’s holographic equipartition law, which is related to the origin of spacetime dynamics, is applied to a de Sitter universe. It is found that the law should lead to a holographic-like connection. The holographic-like connection is considered to be a bridge between thermostatistical quantities on the horizon and in the bulk. For example, cosmological equations for a flat FRW universe can be derived from horizon thermodynamics by accepting the connection as a viable scenario. In addition, a thermal entropy equivalent to the Bekenstein–Hawking entropy is obtained from the Friedmann equation using the concept of a canonical ensemble in statistical physics. The present study should provide new insight into the discussion of horizon thermodynamics and cosmological equations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11855-7.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11855-7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 1
Abstract
Horizon thermodynamics is expected to be related to the effective energy based on the energy density calculated from the Friedmann equation for a Friedmann–Robertson–Walker (FRW) universe. In the present study, the effective energy and thermostatistical quantities on a cosmological horizon are examined to clarify the holographic-like connection between them, with a focus on a de Sitter universe. To this end, the Helmholtz free energy on the horizon is derived from horizon thermodynamics. The free energy is found to be equivalent to the effective energy calculated from the Friedmann equation. This consistency is interpreted as a kind of holographic-like connection. To examine this connection, Padmanabhan’s holographic equipartition law, which is related to the origin of spacetime dynamics, is applied to a de Sitter universe. It is found that the law should lead to a holographic-like connection. The holographic-like connection is considered to be a bridge between thermostatistical quantities on the horizon and in the bulk. For example, cosmological equations for a flat FRW universe can be derived from horizon thermodynamics by accepting the connection as a viable scenario. In addition, a thermal entropy equivalent to the Bekenstein–Hawking entropy is obtained from the Friedmann equation using the concept of a canonical ensemble in statistical physics. The present study should provide new insight into the discussion of horizon thermodynamics and cosmological equations.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.