{"title":"CT-based deep learning model: a novel approach to the preoperative staging in patients with peritoneal metastasis.","authors":"Jipeng Wang, Yuannan Hu, Hao Xiong, Tiantian Song, Shuyi Wang, Haibo Xu, Bin Xiong","doi":"10.1007/s10585-023-10235-5","DOIUrl":null,"url":null,"abstract":"<p><p>Peritoneal metastasis (PM) is a frequent manifestation of advanced abdominal malignancies. Accurately assessing the extent of PM before surgery is essential for patients to receive optimal treatment. Therefore, we propose to construct a deep learning (DL) model based on enhanced computed tomography (CT) images to stage PM preoperatively in patients. All 168 patients with PM underwent contrast-enhanced abdominal CT before either open surgery or laparoscopic exploration, and peritoneal cancer index (PCI) was used to evaluate patients during the surgical procedure. DL features were extracted from portal venous-phase abdominal CT scans and subjected to feature selection using the Spearman correlation coefficient and LASSO. The performance of models for preoperative staging was assessed in the validation cohort and compared against models based on clinical and radiomics (Rad) signature. The DenseNet121-SVM model demonstrated strong patient discrimination in both the training and validation cohorts, achieving AUC was 0.996 in training and 0.951 validation cohort, which were both higher than those of the Clinic model and Rad model. Decision curve analysis (DCA) showed that patients could potentially benefit more from treatment using the DL-SVM model, and calibration curves demonstrated good agreement with actual outcomes. The DL model based on portal venous-phase abdominal CT accurately predicts the extent of PM in patients before surgery, which can help maximize the benefits of treatment and optimize the patient's treatment plan.</p>","PeriodicalId":10267,"journal":{"name":"Clinical & Experimental Metastasis","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618318/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Experimental Metastasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10585-023-10235-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peritoneal metastasis (PM) is a frequent manifestation of advanced abdominal malignancies. Accurately assessing the extent of PM before surgery is essential for patients to receive optimal treatment. Therefore, we propose to construct a deep learning (DL) model based on enhanced computed tomography (CT) images to stage PM preoperatively in patients. All 168 patients with PM underwent contrast-enhanced abdominal CT before either open surgery or laparoscopic exploration, and peritoneal cancer index (PCI) was used to evaluate patients during the surgical procedure. DL features were extracted from portal venous-phase abdominal CT scans and subjected to feature selection using the Spearman correlation coefficient and LASSO. The performance of models for preoperative staging was assessed in the validation cohort and compared against models based on clinical and radiomics (Rad) signature. The DenseNet121-SVM model demonstrated strong patient discrimination in both the training and validation cohorts, achieving AUC was 0.996 in training and 0.951 validation cohort, which were both higher than those of the Clinic model and Rad model. Decision curve analysis (DCA) showed that patients could potentially benefit more from treatment using the DL-SVM model, and calibration curves demonstrated good agreement with actual outcomes. The DL model based on portal venous-phase abdominal CT accurately predicts the extent of PM in patients before surgery, which can help maximize the benefits of treatment and optimize the patient's treatment plan.
期刊介绍:
The Journal''s scope encompasses all aspects of metastasis research, whether laboratory-based, experimental or clinical and therapeutic. It covers such areas as molecular biology, pharmacology, tumor biology, and clinical cancer treatment (with all its subdivisions of surgery, chemotherapy and radio-therapy as well as pathology and epidemiology) insofar as these disciplines are concerned with the Journal''s core subject of metastasis formation, prevention and treatment.