Glycyrrhizin inhibits LPS-induced inflammatory responses in goat ruminal epithelial cells in vitro.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-09-19 DOI:10.1186/s12860-023-00489-y
Junfeng Liu, Bei Ma, Guang Hao, DuoDuo Su, Tianyang Wang, Ze Ding, Xuefeng Guo
{"title":"Glycyrrhizin inhibits LPS-induced inflammatory responses in goat ruminal epithelial cells in vitro.","authors":"Junfeng Liu, Bei Ma, Guang Hao, DuoDuo Su, Tianyang Wang, Ze Ding, Xuefeng Guo","doi":"10.1186/s12860-023-00489-y","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation plays a crucial role in the progression of Subacute Ruminal Acidosis (SARA). The experiment was designed to investigate anti-inflammatory effects of glycyrrhizin on goats ruminal epithelial cells (GREC) which were induced SARA by Lipopolysaccharide (LPS) in vitro. The GREC were induced SARA by adding LPS at the concentration of 5 μm and glycyrrhizin was added at different concentration of 0, 60, 90, 120, 150 μm. The structural integrity of LPS-induced GREC with the treatment of glycyrrhizin were observed by electron microscope; The levels of inflammatory factors TNF-α, IL-1β, IL-6, IL-8 and IL-12 were measured by ELISA; The number of Zo-1 and Occludin were measured, the expression of tight junction protein Occludin were measured by Western blot, and the mRNA expression of NF-κB, TNF-α, IL-1β, IL-6, IL-8 and IL-12 were measured in vitro. The results showed that higher concentration treatment of glycyrrhizin led to better morphology in LPS-induced GREC. Glycyrrhizin inhibited the growth of inflammatory factors TNF-α, IL-1β, IL-6, IL-8 and IL-12 in a dose-dependent manner. The number of ZO-1 and Occludin increased with the increase of adding of glycyrrhizin. Western blot analysis showed that the expression of tight junction protein Occludin in LPS-induced GREC increased with the adding of glycyrrhizin in a dose-dependent manner. Furthermore, the mRNA expression of NF-κB, TNF-α, IL-1β, IL-6, IL-8 and IL-12 decreased significantly with the increase treatment of glycyrrhizin. Glycyrrhizin significantly inhibits LPS-induced inflammatory mediators in GREC and the effects are better with the increase treatment of glycyrrhizin in vitro.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-023-00489-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammation plays a crucial role in the progression of Subacute Ruminal Acidosis (SARA). The experiment was designed to investigate anti-inflammatory effects of glycyrrhizin on goats ruminal epithelial cells (GREC) which were induced SARA by Lipopolysaccharide (LPS) in vitro. The GREC were induced SARA by adding LPS at the concentration of 5 μm and glycyrrhizin was added at different concentration of 0, 60, 90, 120, 150 μm. The structural integrity of LPS-induced GREC with the treatment of glycyrrhizin were observed by electron microscope; The levels of inflammatory factors TNF-α, IL-1β, IL-6, IL-8 and IL-12 were measured by ELISA; The number of Zo-1 and Occludin were measured, the expression of tight junction protein Occludin were measured by Western blot, and the mRNA expression of NF-κB, TNF-α, IL-1β, IL-6, IL-8 and IL-12 were measured in vitro. The results showed that higher concentration treatment of glycyrrhizin led to better morphology in LPS-induced GREC. Glycyrrhizin inhibited the growth of inflammatory factors TNF-α, IL-1β, IL-6, IL-8 and IL-12 in a dose-dependent manner. The number of ZO-1 and Occludin increased with the increase of adding of glycyrrhizin. Western blot analysis showed that the expression of tight junction protein Occludin in LPS-induced GREC increased with the adding of glycyrrhizin in a dose-dependent manner. Furthermore, the mRNA expression of NF-κB, TNF-α, IL-1β, IL-6, IL-8 and IL-12 decreased significantly with the increase treatment of glycyrrhizin. Glycyrrhizin significantly inhibits LPS-induced inflammatory mediators in GREC and the effects are better with the increase treatment of glycyrrhizin in vitro.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘草酸在体外抑制LPS诱导的山羊瘤胃上皮细胞炎症反应。
炎症在亚急性瘤胃酸中毒(SARA)的进展中起着至关重要的作用。本实验旨在研究甘草甜素对脂多糖(LPS)诱导的山羊瘤胃上皮细胞(GREC)的抗炎作用。通过添加5μm浓度的LPS和0、60、90、120、150μm不同浓度的甘草甜素来诱导GREC的严重急性呼吸系统综合征。用电子显微镜观察甘草酸处理LPS诱导的GREC的结构完整性;ELISA法测定炎症因子TNF-α、IL-1β、IL-6、IL-8和IL-12水平;测定Zo-1和Occludin的数量,用Western印迹法测定紧密连接蛋白Occludin的表达,并在体外测定NF-κB、TNF-α、IL-1β、IL-6、IL-8和IL-12的mRNA表达。结果表明,高浓度的甘草甜素处理可使LPS诱导的GREC具有更好的形态。甘草酸对炎症因子TNF-α、IL-1β、IL-6、IL-8和IL-12的生长具有剂量依赖性抑制作用。ZO-1和Occludin的含量随着甘草甜素添加量的增加而增加。Western印迹分析显示,LPS诱导的GREC中紧密连接蛋白Occludin的表达随着甘草甜素的添加而增加,呈剂量依赖性。此外,随着甘草甜素治疗的增加,NF-κB、TNF-α、IL-1β、IL-6、IL-8和IL-12的mRNA表达显著降低。甘草甜素对LPS诱导的GREC炎症介质有明显的抑制作用,且在体外增加甘草甜素的处理效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1