{"title":"Serum IgA augments adhesiveness of cultured lung microvascular endothelial cells and suppresses angiogenesis","authors":"Kazufumi Takada , Maho Suzukawa , Sayaka Igarashi , Yuuki Uehara , Shizuka Watanabe , Sahoko Imoto , Masaki Ishii , Yoshiteru Morio , Hirotoshi Matsui , Masahiro Akishita , Ken Ohta","doi":"10.1016/j.cellimm.2023.104769","DOIUrl":null,"url":null,"abstract":"<div><p>Immunoglobulin A (IgA) is important in local immunity and is also abundant in the blood. This study aimed to evaluate the effects of serum IgA on cultured lung microvascular endothelial cells (HMVEC-Ls), which are involved in the pathogenesis of inflammatory lung diseases. Serum IgA induced adhesion molecules and inflammatory cytokine production from HMVEC-Ls, and enhanced adhesion of peripheral blood mononuclear cells to HMVEC-Ls. In contrast, migration, proliferation, and tube formation of HMVEC-Ls were significantly suppressed by serum IgA. Experiments with siRNAs and western blotting revealed that two known IgA receptors, β1,4-galactosyltransferase 1 (b4GALT1) and asialoglycoprotein receptor 1 (ASGR1), and mitogen-activated protein kinase and nuclear factor-kappa B pathways were partly involved in serum IgA-induced cytokine production by HMVEC-Ls. Collectively, serum IgA enhanced cytokine production and adhesiveness of HMVEC-L, with b4GALT1 and ASGR1 partially being involved, and suppressed angiogenesis. Thus, serum IgA may be targeted to treat inflammatory lung diseases.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008874923001089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunoglobulin A (IgA) is important in local immunity and is also abundant in the blood. This study aimed to evaluate the effects of serum IgA on cultured lung microvascular endothelial cells (HMVEC-Ls), which are involved in the pathogenesis of inflammatory lung diseases. Serum IgA induced adhesion molecules and inflammatory cytokine production from HMVEC-Ls, and enhanced adhesion of peripheral blood mononuclear cells to HMVEC-Ls. In contrast, migration, proliferation, and tube formation of HMVEC-Ls were significantly suppressed by serum IgA. Experiments with siRNAs and western blotting revealed that two known IgA receptors, β1,4-galactosyltransferase 1 (b4GALT1) and asialoglycoprotein receptor 1 (ASGR1), and mitogen-activated protein kinase and nuclear factor-kappa B pathways were partly involved in serum IgA-induced cytokine production by HMVEC-Ls. Collectively, serum IgA enhanced cytokine production and adhesiveness of HMVEC-L, with b4GALT1 and ASGR1 partially being involved, and suppressed angiogenesis. Thus, serum IgA may be targeted to treat inflammatory lung diseases.
期刊介绍:
Cellular Immunology publishes original investigations concerned with the immunological activities of cells in experimental or clinical situations. The scope of the journal encompasses the broad area of in vitro and in vivo studies of cellular immune responses. Purely clinical descriptive studies are not considered.
Research Areas include:
• Antigen receptor sites
• Autoimmunity
• Delayed-type hypersensitivity or cellular immunity
• Immunologic deficiency states and their reconstitution
• Immunologic surveillance and tumor immunity
• Immunomodulation
• Immunotherapy
• Lymphokines and cytokines
• Nonantibody immunity
• Parasite immunology
• Resistance to intracellular microbial and viral infection
• Thymus and lymphocyte immunobiology
• Transplantation immunology
• Tumor immunity.