{"title":"Orthodenticle Homeobox OTX1 Promotes Papillary Thyroid Carcinoma Progression and Is a Potential Prognostic Biomarker.","authors":"Jing Wei, Xin Wang, Kai Jiao","doi":"10.1155/2023/5513812","DOIUrl":null,"url":null,"abstract":"<p><p>Papillary thyroid carcinoma (PTC) is the most common type of thyroid neoplasms, characterized by evidence of follicular cell differentiation. Orthodenticle homeobox 1 (OTX1) is a transcription factor which has been implicated in numerous diseases, including malignancies. The objective of this research was to explore the function of OTX1 in PTC. Immunohistochemistry (IHC) was employed to determine the protein level of OTX1 in PTC specimens. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, a xenograft model on nude mice was established to investigate in vivo effects of OTX1. Our results revealed that OTX1 was significantly upregulated within specific PTC tissues and was remarkably correlated with unfavorable clinical outcomes in PTC. Silencing OTX1 resulted in a significant inhibition in cell viability and suppressed cell proliferation. In addition, in vivo experiments demonstrated that OTX1 silencing resulted in a significant suppression of tumor growth in nude mice. Collectively, these results suggest that OTX1 may play crucial roles in promoting PTC progression.</p>","PeriodicalId":12778,"journal":{"name":"Genetics research","volume":"2023 ","pages":"5513812"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/5513812","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid neoplasms, characterized by evidence of follicular cell differentiation. Orthodenticle homeobox 1 (OTX1) is a transcription factor which has been implicated in numerous diseases, including malignancies. The objective of this research was to explore the function of OTX1 in PTC. Immunohistochemistry (IHC) was employed to determine the protein level of OTX1 in PTC specimens. Cell viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, a xenograft model on nude mice was established to investigate in vivo effects of OTX1. Our results revealed that OTX1 was significantly upregulated within specific PTC tissues and was remarkably correlated with unfavorable clinical outcomes in PTC. Silencing OTX1 resulted in a significant inhibition in cell viability and suppressed cell proliferation. In addition, in vivo experiments demonstrated that OTX1 silencing resulted in a significant suppression of tumor growth in nude mice. Collectively, these results suggest that OTX1 may play crucial roles in promoting PTC progression.
期刊介绍:
Genetics Research is a key forum for original research on all aspects of human and animal genetics, reporting key findings on genomes, genes, mutations and molecular interactions, extending out to developmental, evolutionary, and population genetics as well as ethical, legal and social aspects. Our aim is to lead to a better understanding of genetic processes in health and disease. The journal focuses on the use of new technologies, such as next generation sequencing together with bioinformatics analysis, to produce increasingly detailed views of how genes function in tissues and how these genes perform, individually or collectively, in normal development and disease aetiology. The journal publishes original work, review articles, short papers, computational studies, and novel methods and techniques in research covering humans and well-established genetic organisms. Key subject areas include medical genetics, genomics, human evolutionary and population genetics, bioinformatics, genetics of complex traits, molecular and developmental genetics, Evo-Devo, quantitative and statistical genetics, behavioural genetics and environmental genetics. The breadth and quality of research make the journal an invaluable resource for medical geneticists, molecular biologists, bioinformaticians and researchers involved in genetic basis of diseases, evolutionary and developmental studies.