Charting the solid-state NMR signals of polysaccharides: A database-driven roadmap

IF 1.9 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Magnetic Resonance in Chemistry Pub Date : 2023-09-19 DOI:10.1002/mrc.5397
Wancheng Zhao, Debkumar Debnath, Isha Gautam, Liyanage D. Fernando, Tuo Wang
{"title":"Charting the solid-state NMR signals of polysaccharides: A database-driven roadmap","authors":"Wancheng Zhao,&nbsp;Debkumar Debnath,&nbsp;Isha Gautam,&nbsp;Liyanage D. Fernando,&nbsp;Tuo Wang","doi":"10.1002/mrc.5397","DOIUrl":null,"url":null,"abstract":"<p>Solid-state nuclear magnetic resonance (ssNMR) measurements of intact cell walls and cellular samples often generate spectra that are difficult to interpret due to the presence of many coexisting glycans and the structural polymorphism observed in native conditions. To overcome this analytical challenge, we present a statistical approach for analyzing carbohydrate signals using high-resolution ssNMR data indexed in a carbohydrate database. We generate simulated spectra to demonstrate the chemical shift dispersion and compare this with experimental data to facilitate the identification of important fungal and plant polysaccharides, such as chitin and glucans in fungi and cellulose, hemicellulose, and pectic polymers in plants. We also demonstrate that chemically distinct carbohydrates from different organisms may produce almost identical signals, highlighting the need for high-resolution spectra and validation of resonance assignments. Our study provides a means to differentiate the characteristic signals of major carbohydrates and allows us to summarize currently undetected polysaccharides in plants and fungi, which may inspire future investigations.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5397","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5397","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state nuclear magnetic resonance (ssNMR) measurements of intact cell walls and cellular samples often generate spectra that are difficult to interpret due to the presence of many coexisting glycans and the structural polymorphism observed in native conditions. To overcome this analytical challenge, we present a statistical approach for analyzing carbohydrate signals using high-resolution ssNMR data indexed in a carbohydrate database. We generate simulated spectra to demonstrate the chemical shift dispersion and compare this with experimental data to facilitate the identification of important fungal and plant polysaccharides, such as chitin and glucans in fungi and cellulose, hemicellulose, and pectic polymers in plants. We also demonstrate that chemically distinct carbohydrates from different organisms may produce almost identical signals, highlighting the need for high-resolution spectra and validation of resonance assignments. Our study provides a means to differentiate the characteristic signals of major carbohydrates and allows us to summarize currently undetected polysaccharides in plants and fungi, which may inspire future investigations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绘制多糖的固态NMR信号图:数据库驱动的路线图。
完整细胞壁和细胞样品的固态核磁共振(ssNMR)测量通常产生难以解释的光谱,这是由于存在许多共存的聚糖和在天然条件下观察到的结构多态性。为了克服这一分析挑战,我们提出了一种使用碳水化合物数据库中索引的高分辨率ssNMR数据分析碳水化合物信号的统计方法。我们生成模拟光谱来证明化学位移分散,并将其与实验数据进行比较,以便于鉴定重要的真菌和植物多糖,如真菌中的几丁质和葡聚糖,以及植物中的纤维素、半纤维素和果胶聚合物。我们还证明,来自不同生物体的化学性质不同的碳水化合物可能会产生几乎相同的信号,这突出了对高分辨率光谱和共振分配验证的需求。我们的研究提供了一种区分主要碳水化合物特征信号的方法,并使我们能够总结目前在植物和真菌中未被发现的多糖,这可能会启发未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
99
审稿时长
1 months
期刊介绍: MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published. The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.
期刊最新文献
HRMAS NMR for Studying Solvent-Induced Mobility of Polymer Chains and Metallocene Migration Into Low-Density Polyethylene (LDPE). Structural Elucidation and Complete NMR Spectral Assignments of Monascus Monacolin Analogs. Issue Information Reversibly Compressible Cross-Linked Polystyrene Gels, Compatible With Toluene-d8 and Pyridine-d5, for Measurement of Residual Dipolar Couplings and Residual Chemical Shift Anisotropies. A New qNMR Compliant Savitzky-Golay Apodization Function for Resolution Enhancement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1