Mesenchymal stromal cells as conductors of adipose tissue remodeling.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY Genes & development Pub Date : 2023-09-01 Epub Date: 2023-10-05 DOI:10.1101/gad.351069.123
Jessica Cannavino, Rana K Gupta
{"title":"Mesenchymal stromal cells as conductors of adipose tissue remodeling.","authors":"Jessica Cannavino, Rana K Gupta","doi":"10.1101/gad.351069.123","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.</p>","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":" ","pages":"781-800"},"PeriodicalIF":7.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.351069.123","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间充质基质细胞作为脂肪组织重塑的导体。
脂肪组织表现出显著的扩张、收缩和重塑能力,以应对生理和环境条件的变化。在这里,我们描述了我们对功能不同的组织驻留间充质基质细胞亚群如何协调生理和病理生理脂肪组织重塑的几个方面的理解的最新进展,特别关注对能量过剩和环境温度变化的适应。脂肪组织重塑的研究为了解基质细胞的功能多样性提供了一种载体,并提供了一个透镜,通过它可以很容易地观察组织重组的几个可推广的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes & development
Genes & development 生物-发育生物学
CiteScore
17.50
自引率
1.90%
发文量
71
审稿时长
3-6 weeks
期刊介绍: Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers. Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).
期刊最新文献
mTORC1, the maestro of cell metabolism and growth PROSER1 modulates DNA demethylation through dual mechanisms to prevent syndromic developmental malformations Evidence for dual roles of histone H3 lysine 4 in antagonizing Polycomb group function and promoting target gene expression Proteomic insights into circadian transcription regulation: novel E-box interactors revealed by proximity labeling BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1