Hsa_circ_0052611 and mir-767-5p guide the warburg effect, migration, and invasion of BRCA cells through modulating SCAI.

IF 2.9 4区 生物学 Q2 BIOPHYSICS Journal of Bioenergetics and Biomembranes Pub Date : 2023-10-01 Epub Date: 2023-09-25 DOI:10.1007/s10863-023-09985-4
Xin Wang, Zongwen Liu, Alan Chu, Rui Song, Shijia Liu, Ting Chai, Chen Sun
{"title":"Hsa_circ_0052611 and mir-767-5p guide the warburg effect, migration, and invasion of BRCA cells through modulating SCAI.","authors":"Xin Wang,&nbsp;Zongwen Liu,&nbsp;Alan Chu,&nbsp;Rui Song,&nbsp;Shijia Liu,&nbsp;Ting Chai,&nbsp;Chen Sun","doi":"10.1007/s10863-023-09985-4","DOIUrl":null,"url":null,"abstract":"<p><p>Noncoding RNAs are key regulators in the Warburg Effect, an emerging hallmark of cancer. We intended to investigate the role and mechanism of circular RNA hsa_circ_0052611 (circ_0052611) and microRNA (miR)-767-5p in breast cancer (BRCA) hallmarks, especially the Warburg Effect. Expression of circ_0052611 and SCAI was downregulated, and miR-767-5p was upregulated in human BRCA tissues and cells; moreover, circ_0052611 acted as a miR-767-5p sponge to modulate the expression of miR-767-5p-targeted SCAI. Functionally, re-expressing circ_0052611 suppressed migration, invasion, glucose uptake, lactate production, and extracellular acidification rate (ECAR) in BRCA cells, and promoted apoptotic rate. These effects were accompanied by decreased Vimentin, N-cadherin, Bcl-2, and LDHA, and increased E-cadherin and Bax. Consistently, exhausting miR-767-5p exerted similar effects in BRCA cells. High miR-767-5p could counteract the role of circ_0052611 overexpression, and low SCAI likewise blocked the role of miR-767-5p deletion. In vivo, upregulating circ_0052611 delayed tumor growth of BRCA cells by altering miR-767-5p and SCAI expression. circ_0052611/miR-767-5p/SCAI axis might boycott the malignancy of BRCA cells.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":"55 5","pages":"381-396"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-023-09985-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Noncoding RNAs are key regulators in the Warburg Effect, an emerging hallmark of cancer. We intended to investigate the role and mechanism of circular RNA hsa_circ_0052611 (circ_0052611) and microRNA (miR)-767-5p in breast cancer (BRCA) hallmarks, especially the Warburg Effect. Expression of circ_0052611 and SCAI was downregulated, and miR-767-5p was upregulated in human BRCA tissues and cells; moreover, circ_0052611 acted as a miR-767-5p sponge to modulate the expression of miR-767-5p-targeted SCAI. Functionally, re-expressing circ_0052611 suppressed migration, invasion, glucose uptake, lactate production, and extracellular acidification rate (ECAR) in BRCA cells, and promoted apoptotic rate. These effects were accompanied by decreased Vimentin, N-cadherin, Bcl-2, and LDHA, and increased E-cadherin and Bax. Consistently, exhausting miR-767-5p exerted similar effects in BRCA cells. High miR-767-5p could counteract the role of circ_0052611 overexpression, and low SCAI likewise blocked the role of miR-767-5p deletion. In vivo, upregulating circ_0052611 delayed tumor growth of BRCA cells by altering miR-767-5p and SCAI expression. circ_0052611/miR-767-5p/SCAI axis might boycott the malignancy of BRCA cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hsa_cir_0052611和mir-767-5p通过调节SCAI指导BRCA细胞的warburg效应、迁移和侵袭。
非编码RNA是Warburg效应的关键调节因子,Warburg效应是癌症的一个新标志。我们旨在研究环形RNA hsa_cir_0052611(circ_0052611)和微小RNA(miR)-767-5p在乳腺癌症(BRCA)特征,特别是Warburg效应中的作用和机制。在人类BRCA组织和细胞中,circ_0052611和SCAI的表达下调,miR-767-5p上调;此外,circ_0052611作为miR-767-5p海绵调节miR-767-56p靶向SCAI的表达。在功能上,重新表达circ_0052611抑制BRCA细胞的迁移、侵袭、葡萄糖摄取、乳酸产生和细胞外酸化率(ECAR),并促进细胞凋亡率。这些作用伴随着波形蛋白、N-钙粘蛋白、Bcl-2和LDHA的降低,以及E-钙粘蛋白和Bax的增加。一致地,耗尽miR-767-5p在BRCA细胞中发挥类似的作用。高miR-767-5p可以抵消circ_0052611过表达的作用,低SCAI同样阻断miR-767-56p缺失的作用。在体内,上调circ_0052611通过改变miR-767-5p和SCAI的表达来延迟BRCA细胞的肿瘤生长。circ_0052611/miR-767-5p/SCAI轴可能抵制BRCA细胞的恶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
22
审稿时长
6-12 weeks
期刊介绍: The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.
期刊最新文献
Lithium compromises the bioenergetic reserve of cardiomyoblasts mitochondria. Amyloid beta (Aβ) fibrillation kinetics and its impact on membrane polarity. Sirt6 regulates the Notch signaling pathway and mediates autophagy and regulates podocyte damage in diabetic nephropathy. Nigericin modifies the mechanism of the uncoupling action of bile acids in rat liver mitochondria by converting ΔpH into Δψ. Acute CCl4-induced intoxication reduces complex I, but not complex II-based mitochondrial bioenergetics - protective role of succinate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1