{"title":"Catching the Culprit: How Chorea May Signal an Inborn Error of Metabolism.","authors":"Juan Darío Ortigoza-Escobar","doi":"10.5334/tohm.801","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Movement disorders, particularly chorea, are uncommon in inborn errors of metabolism, but their identification is essential for improved clinical outcomes. In this context, comprehensive descriptions of movement disorders are limited and primarily derived from single cases or small patient series, highlighting the need for increased awareness and additional research in this field.</p><p><strong>Methods: </strong>A systematic review was conducted using the MEDLINE database and GeneReviews. The search included studies on inborn errors of metabolism associated with chorea, athetosis, or ballismus. The review adhered to PRISMA guidelines.</p><p><strong>Results: </strong>The systematic review analyzed 76 studies out of 2350 records, encompassing the period from 1964 to 2022. Chorea was observed in 90.1% of the 173 patients, followed by athetosis in 5.7%. Various inborn errors of metabolism showed an association with chorea, with trace elements and metals being the most frequent. Cognitive and developmental abnormalities were common in the cohort. Frequent neurological features included seizures, dysarthria, and optic atrophy, whereas non-neurological features included, among others, facial dysmorphia and failure to thrive. Neuroimaging and biochemical testing played crucial roles in aiding diagnosis, revealing abnormal findings in 34.1% and 47.9% of patients, respectively. However, symptomatic treatment efficacy for movement disorders was limited.</p><p><strong>Discussion: </strong>This study emphasizes the complexities of chorea in inborn errors of metabolism. A systematic approach with red flags, biochemical testing, and neuroimaging is required for diagnosis. Collaboration between neurologists, geneticists, and metabolic specialists is crucial for improving early detection and individualized treatment. Utilizing genetic testing technologies and potential therapeutic avenues can aid in the improvement of patient outcomes.</p>","PeriodicalId":23317,"journal":{"name":"Tremor and Other Hyperkinetic Movements","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tremor and Other Hyperkinetic Movements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/tohm.801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Movement disorders, particularly chorea, are uncommon in inborn errors of metabolism, but their identification is essential for improved clinical outcomes. In this context, comprehensive descriptions of movement disorders are limited and primarily derived from single cases or small patient series, highlighting the need for increased awareness and additional research in this field.
Methods: A systematic review was conducted using the MEDLINE database and GeneReviews. The search included studies on inborn errors of metabolism associated with chorea, athetosis, or ballismus. The review adhered to PRISMA guidelines.
Results: The systematic review analyzed 76 studies out of 2350 records, encompassing the period from 1964 to 2022. Chorea was observed in 90.1% of the 173 patients, followed by athetosis in 5.7%. Various inborn errors of metabolism showed an association with chorea, with trace elements and metals being the most frequent. Cognitive and developmental abnormalities were common in the cohort. Frequent neurological features included seizures, dysarthria, and optic atrophy, whereas non-neurological features included, among others, facial dysmorphia and failure to thrive. Neuroimaging and biochemical testing played crucial roles in aiding diagnosis, revealing abnormal findings in 34.1% and 47.9% of patients, respectively. However, symptomatic treatment efficacy for movement disorders was limited.
Discussion: This study emphasizes the complexities of chorea in inborn errors of metabolism. A systematic approach with red flags, biochemical testing, and neuroimaging is required for diagnosis. Collaboration between neurologists, geneticists, and metabolic specialists is crucial for improving early detection and individualized treatment. Utilizing genetic testing technologies and potential therapeutic avenues can aid in the improvement of patient outcomes.