{"title":"Effects of ankle-foot orthosis on gait pattern and spatiotemporal indices during treadmill walking in hemiparetic stroke.","authors":"Kei Ohtsuka, Masahiko Mukaino, Junya Yamada, Matsuda Fumihiro, Hiroki Tanikawa, Kazuhiro Tsuchiyama, Toshio Teranishi, Eiichi Saitoh, Yohei Otaka","doi":"10.1097/MRR.0000000000000602","DOIUrl":null,"url":null,"abstract":"<p><p>Ankle-foot orthosis (AFO) is known to correct abnormal gait patterns and improve walking stability and speed in patients with hemiparesis. To quantify these benefits in post-stroke gait, a three-dimensional motion analysis of gait pattern was conducted. Forty patients with hemiparesis were enrolled. A three-dimensional motion analysis system was used to analyze patients' treadmill walking with/without an AFO. Outcome measures were 12 abnormal gait indices (forefoot contact, knee extensor thrust, retropulsion of the hip, flexed-knee gait, medial whip in the stance phase, circumduction gait, hip hiking, insufficient knee flexion during the swing phase, excessive lateral shifting of the trunk, contralateral vaulting, excessive hip external rotation, and posterior pelvic tilt), calculated using kinematic data and spatiotemporal indices, and the symmetry index of double-stance and single-stance time and step length. Forefoot contact (without AFO vs. with AFO: 71.0 vs. 65.8, P < 0.001), circumduction gait (65.0 vs. 57.9, P < 0.001), and contralateral vaulting (78.2 vs. 72.2, P = 0.003) were significantly reduced, whereas excessive hip external rotation (53.7 vs. 62.8, P = 0.003) significantly increased during walking with an AFO. Hip hiking (77.1 vs. 71.7) showed marginal reduction with the use of AFO ( P = 0.096). The absolute symmetry index of double-stance time (21.9 vs. 16.1, P = 0.014) significantly decreased during walking with an AFO. AFO effectively mitigates abnormal gait patterns typical of hemiparetic gait. A 3D motion analysis system with clinically oriented indices can help assess intervention efficacy for gait abnormalities.</p>","PeriodicalId":14301,"journal":{"name":"International Journal of Rehabilitation Research","volume":" ","pages":"316-324"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rehabilitation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MRR.0000000000000602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0
Abstract
Ankle-foot orthosis (AFO) is known to correct abnormal gait patterns and improve walking stability and speed in patients with hemiparesis. To quantify these benefits in post-stroke gait, a three-dimensional motion analysis of gait pattern was conducted. Forty patients with hemiparesis were enrolled. A three-dimensional motion analysis system was used to analyze patients' treadmill walking with/without an AFO. Outcome measures were 12 abnormal gait indices (forefoot contact, knee extensor thrust, retropulsion of the hip, flexed-knee gait, medial whip in the stance phase, circumduction gait, hip hiking, insufficient knee flexion during the swing phase, excessive lateral shifting of the trunk, contralateral vaulting, excessive hip external rotation, and posterior pelvic tilt), calculated using kinematic data and spatiotemporal indices, and the symmetry index of double-stance and single-stance time and step length. Forefoot contact (without AFO vs. with AFO: 71.0 vs. 65.8, P < 0.001), circumduction gait (65.0 vs. 57.9, P < 0.001), and contralateral vaulting (78.2 vs. 72.2, P = 0.003) were significantly reduced, whereas excessive hip external rotation (53.7 vs. 62.8, P = 0.003) significantly increased during walking with an AFO. Hip hiking (77.1 vs. 71.7) showed marginal reduction with the use of AFO ( P = 0.096). The absolute symmetry index of double-stance time (21.9 vs. 16.1, P = 0.014) significantly decreased during walking with an AFO. AFO effectively mitigates abnormal gait patterns typical of hemiparetic gait. A 3D motion analysis system with clinically oriented indices can help assess intervention efficacy for gait abnormalities.
期刊介绍:
International Journal of Rehabilitation Research is a quarterly, peer-reviewed, interdisciplinary forum for the publication of research into functioning, disability and contextual factors experienced by persons of all ages in both developed and developing societies. The wealth of information offered makes the journal a valuable resource for researchers, practitioners, and administrators in such fields as rehabilitation medicine, outcome measurement nursing, social and vocational rehabilitation/case management, return to work, special education, social policy, social work and social welfare, sociology, psychology, psychiatry assistive technology and environmental factors/disability. Areas of interest include functioning and disablement throughout the life cycle; rehabilitation programmes for persons with physical, sensory, mental and developmental disabilities; measurement of functioning and disability; special education and vocational rehabilitation; equipment access and transportation; information technology; independent living; consumer, legal, economic and sociopolitical aspects of functioning, disability and contextual factors.