{"title":"CB65 and novel CB65 liposomal system suppress MG63 and Saos-2 osteosarcoma cell growth <i>in vitro</i>.","authors":"Başak Işıl Zorba, Özge Boyacıoğlu, Tuğba Çağlayan, Tuba Reçber, Emirhan Nemutlu, İpek Eroğlu, Petek Korkusuz","doi":"10.1080/08982104.2023.2262025","DOIUrl":null,"url":null,"abstract":"<p><p>Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells <i>via</i> cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10<sup>-11</sup> and 4.95 × 10<sup>-11</sup> M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following <i>in vivo</i> validation.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"274-287"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2023.2262025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells via cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10-11 and 4.95 × 10-11 M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following in vivo validation.
期刊介绍:
The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society.
The scope of the Journal includes:
Formulation and characterisation of systems
Formulation engineering of systems
Synthetic and physical lipid chemistry
Lipid Biology
Biomembranes
Vaccines
Emerging technologies and systems related to liposomes and vesicle type systems
Developmental methodologies and new analytical techniques pertaining to the general area
Pharmacokinetics, pharmacodynamics and biodistribution of systems
Clinical applications.
The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.