{"title":"Prediction of prognostic and immune therapy response in lung adenocarcinoma based on MHC-I-related genes.","authors":"Hangdi Xu, Yanjie Hu, Xiuming Peng, Enguo Chen","doi":"10.1080/08923973.2023.2261146","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The study investigated the prognostic and immune predictive potential of major histocompatibility complex class I (MHC-I) in lung adenocarcinoma (LUAD).</p><p><strong>Materials and methods: </strong>With The Cancer Genome Atlas (TCGA)-LUAD and Gene Expression Omnibus datasets (GSE26939, GSE72094) as the training and validation sets, respectively, we used Cox regression analysis to construct a prognostic model, and verified independence of riskscore. The predictive capacity of the model was assessed in both sets using the receiver operating characteristic curve and Kaplan-Meier survival curves. Immune analysis was performed by using ssGSEA. Additionally, immune checkpoint blockade therapy was assessed by using immunophenoscore, Tumor Immune Dysfunction and Exclusion score. Based on the cMAP database, effective small molecule compounds were predicted.</p><p><strong>Results: </strong>A prognostic model was established based on 8 MHC-I-related genes, and the predictive capacity of the model was accurate. Immune analysis results revealed that patients classified as high-risk had lower levels of immune cell infiltration and impaired immune function. The low-risk group possessed a better response to immune checkpoint blockade therapy. Theobromine and pravastatin were identified as having great potential in improving the prognosis of LUAD.</p><p><strong>Conclusion: </strong>Overall, the study revealed MHC-I-related molecular prognostic biomarkers as robust indicators for LUAD prognosis and immune therapy response.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"93-106"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2023.2261146","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The study investigated the prognostic and immune predictive potential of major histocompatibility complex class I (MHC-I) in lung adenocarcinoma (LUAD).
Materials and methods: With The Cancer Genome Atlas (TCGA)-LUAD and Gene Expression Omnibus datasets (GSE26939, GSE72094) as the training and validation sets, respectively, we used Cox regression analysis to construct a prognostic model, and verified independence of riskscore. The predictive capacity of the model was assessed in both sets using the receiver operating characteristic curve and Kaplan-Meier survival curves. Immune analysis was performed by using ssGSEA. Additionally, immune checkpoint blockade therapy was assessed by using immunophenoscore, Tumor Immune Dysfunction and Exclusion score. Based on the cMAP database, effective small molecule compounds were predicted.
Results: A prognostic model was established based on 8 MHC-I-related genes, and the predictive capacity of the model was accurate. Immune analysis results revealed that patients classified as high-risk had lower levels of immune cell infiltration and impaired immune function. The low-risk group possessed a better response to immune checkpoint blockade therapy. Theobromine and pravastatin were identified as having great potential in improving the prognosis of LUAD.
Conclusion: Overall, the study revealed MHC-I-related molecular prognostic biomarkers as robust indicators for LUAD prognosis and immune therapy response.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).