Identification of histidine kinase inhibitors through screening of natural compounds to combat mastitis caused by Streptococcus agalactiae in dairy cattle.
{"title":"Identification of histidine kinase inhibitors through screening of natural compounds to combat mastitis caused by Streptococcus agalactiae in dairy cattle.","authors":"Rajesh Kumar Pathak, Jun-Mo Kim","doi":"10.1186/s13036-023-00378-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mastitis poses a major threat to dairy farms globally; it results in reduced milk production, increased treatment costs, untimely compromised genetic potential, animal deaths, and economic losses. Streptococcus agalactiae is a highly virulent bacteria that cause mastitis. The administration of antibiotics for the treatment of this infection is not advised due to concerns about the emergence of antibiotic resistance and potential adverse effects on human health. Thus, there is a critical need to identify new therapeutic approaches to combat mastitis. One promising target for the development of antibacterial therapies is the transmembrane histidine kinase of bacteria, which plays a key role in signal transduction pathways, secretion systems, virulence, and antibiotic resistance.</p><p><strong>Results: </strong>In this study, we aimed to identify novel natural compounds that can inhibit transmembrane histidine kinase. To achieve this goal, we conducted a virtual screening of 224,205 natural compounds, selecting the top ten based on their lowest binding energy and favorable protein-ligand interactions. Furthermore, molecular docking of eight selected antibiotics and five histidine kinase inhibitors with transmembrane histidine kinase was performed to evaluate the binding energy with respect to top-screened natural compounds. We also analyzed the ADMET properties of these compounds to assess their drug-likeness. The top two compounds (ZINC000085569031 and ZINC000257435291) and top-screened antibiotics (Tetracycline) that demonstrated a strong binding affinity were subjected to molecular dynamics simulations (100 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method.</p><p><strong>Conclusion: </strong>Our results suggest that the selected natural compounds have the potential to serve as effective inhibitors of transmembrane histidine kinase and can be utilized for the development of novel antibacterial veterinary medicine for mastitis after further validation through clinical studies.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"17 1","pages":"59"},"PeriodicalIF":5.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-023-00378-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mastitis poses a major threat to dairy farms globally; it results in reduced milk production, increased treatment costs, untimely compromised genetic potential, animal deaths, and economic losses. Streptococcus agalactiae is a highly virulent bacteria that cause mastitis. The administration of antibiotics for the treatment of this infection is not advised due to concerns about the emergence of antibiotic resistance and potential adverse effects on human health. Thus, there is a critical need to identify new therapeutic approaches to combat mastitis. One promising target for the development of antibacterial therapies is the transmembrane histidine kinase of bacteria, which plays a key role in signal transduction pathways, secretion systems, virulence, and antibiotic resistance.
Results: In this study, we aimed to identify novel natural compounds that can inhibit transmembrane histidine kinase. To achieve this goal, we conducted a virtual screening of 224,205 natural compounds, selecting the top ten based on their lowest binding energy and favorable protein-ligand interactions. Furthermore, molecular docking of eight selected antibiotics and five histidine kinase inhibitors with transmembrane histidine kinase was performed to evaluate the binding energy with respect to top-screened natural compounds. We also analyzed the ADMET properties of these compounds to assess their drug-likeness. The top two compounds (ZINC000085569031 and ZINC000257435291) and top-screened antibiotics (Tetracycline) that demonstrated a strong binding affinity were subjected to molecular dynamics simulations (100 ns), free energy landscape, and binding free energy calculations using the MM-PBSA method.
Conclusion: Our results suggest that the selected natural compounds have the potential to serve as effective inhibitors of transmembrane histidine kinase and can be utilized for the development of novel antibacterial veterinary medicine for mastitis after further validation through clinical studies.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.