Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2024-10-01 Epub Date: 2023-09-29 DOI:10.1007/s12033-023-00894-w
Guo Hongfang, Rajwali Khan, Ahmed A El-Mansi
{"title":"Bioinformatics Analysis of miR-181a and Its Role in Adipogenesis, Obesity, and Lipid Metabolism Through Review of Literature.","authors":"Guo Hongfang, Rajwali Khan, Ahmed A El-Mansi","doi":"10.1007/s12033-023-00894-w","DOIUrl":null,"url":null,"abstract":"<p><p>The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2710-2724"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00894-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The miRNAs regulate various biological processes in the mammalian body system. The role of miR-181a in the development, progression, and expansion of cancers is well-documented. However, the role of miR-181a in adipogenesis; lipid metabolism; obesity; and obesity-related issues such as diabetes mellitus needs to be explored. Therefore, in the present study, the literature was searched and bioinformatics tools were applied to explore the role of miR-181a in adipogenesis. The list of adipogenic and lipogenic target genes validated through different publications were extracted and compiled. The network and functional analysis of these target genes was performed through in-silico analysis. The mature sequence of miR-181a of different species were extracted from and were found highly conserved among the curated species. Additionally, we also used various bioinformatics tools such as target gene extraction from Targetscan, miRWalk, and miRDB, and the list of the target genes from these different databases was compared, and common target genes were predicted. These common target genes were further subjected to the enrichment score and KEGG pathways analysis. The enrichment score of the vital KEGG pathways of the target genes is the key regulator of adipogenesis, lipogenesis, obesity, and obesity-related syndromes in adipose tissues. Therefore, the information presented in the current review will explore the regulatory roles of miR-181a in fat tissues and its associated functions and manifestations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-181a的生物信息学分析及其在脂肪生成、肥胖和脂质代谢中的作用。
miRNA调节哺乳动物身体系统中的各种生物过程。miR-181a在癌症的发展、进展和扩展中的作用已被充分证明。然而,miR-181a在脂肪生成中的作用;脂质代谢;肥胖以及与肥胖相关的问题,如糖尿病需要探索。因此,在本研究中,检索文献并应用生物信息学工具来探索miR-181a在脂肪生成中的作用。提取并汇编了通过不同出版物验证的脂肪生成和脂肪生成靶基因列表。通过计算机分析对这些靶基因进行了网络和功能分析。从不同物种中提取了miR-181a的成熟序列,并发现其在精选物种中高度保守。此外,我们还使用了各种生物信息学工具,如从Targetscan、miRWalk和miRDB中提取靶基因,并比较了这些不同数据库中的靶基因列表,预测了常见的靶基因。进一步对这些共同的靶基因进行富集评分和KEGG通路分析。靶基因的重要KEGG途径的富集分数是脂肪组织中脂肪生成、脂肪生成、肥胖和肥胖相关综合征的关键调节因子。因此,本综述中提供的信息将探讨miR-181a在脂肪组织中的调节作用及其相关功能和表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
METTL3 Mediated MALAT1 m6A Modification Promotes Proliferation and Metastasis in Osteosarcoma Cells. FGF2 Functions in H2S's Attenuating Effect on Brain Injury Induced by Deep Hypothermic Circulatory Arrest in Rats. An In Silico Multi-epitopes Vaccine Ensemble and Characterization Against Nosocomial Proteus penneri. Comprehensive Analysis of the Complete Chloroplast Genome of Cinnamomum daphnoides (Lauraceae), An Endangered Island Endemic Plant. HAGLR, A Long Non-coding RNA of Potential Tumor Suppressive Function in Clear Cell Renal Cell Carcinoma: Diagnostic and Prognostic Implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1