The role of glycosaminoglycans in blood pressure regulation

IF 1.9 4区 医学 Q3 HEMATOLOGY Microcirculation Pub Date : 2023-10-04 DOI:10.1111/micc.12832
Baris Afsar, Rengin Elsurer Afsar
{"title":"The role of glycosaminoglycans in blood pressure regulation","authors":"Baris Afsar,&nbsp;Rengin Elsurer Afsar","doi":"10.1111/micc.12832","DOIUrl":null,"url":null,"abstract":"<p>Essential hypertension (HT) is the global health problem and is a major risk factor for the development of cardiovascular and kidney disease. High salt intake has been associated with HT and impaired kidney sodium excretion is considered to be a major mechanism for the development of HT. Although kidney has a very important role in regulation of BP, this traditional view of BP regulation was challenged by recent findings suggesting that nonosmotic tissue sodium deposition is very important for BP regulation. This new paradigm indicates that sodium can be stored and deposited nonosmotically in the interstitium without water retention and without increased BP. One of the major determinants of this deposition is glycosaminoglycans (GAGs). By binding to GAGs found in the endothelial surface layer (ESL) which contains glycocalyx, sodium is osmotically inactivated and not induce concurrent water retention. Thus, GAGs has important function for homeostatic BP and sodium regulation. In the current review, we summarized the role of GAGs in ESL and BP regulation.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12832","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Essential hypertension (HT) is the global health problem and is a major risk factor for the development of cardiovascular and kidney disease. High salt intake has been associated with HT and impaired kidney sodium excretion is considered to be a major mechanism for the development of HT. Although kidney has a very important role in regulation of BP, this traditional view of BP regulation was challenged by recent findings suggesting that nonosmotic tissue sodium deposition is very important for BP regulation. This new paradigm indicates that sodium can be stored and deposited nonosmotically in the interstitium without water retention and without increased BP. One of the major determinants of this deposition is glycosaminoglycans (GAGs). By binding to GAGs found in the endothelial surface layer (ESL) which contains glycocalyx, sodium is osmotically inactivated and not induce concurrent water retention. Thus, GAGs has important function for homeostatic BP and sodium regulation. In the current review, we summarized the role of GAGs in ESL and BP regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖胺聚糖在血压调节中的作用。
原发性高血压(HT)是全球健康问题,也是心血管和肾脏疾病发展的主要危险因素。高盐摄入与HT有关,肾脏钠排泄受损被认为是HT发展的主要机制。尽管肾脏在调节血压方面发挥着非常重要的作用,但最近的研究结果表明,非吸烟组织钠沉积对血压调节非常重要,这对传统的血压调节观点提出了挑战。这一新范式表明,钠可以非烟雾状地储存和沉积在间质中,而不会保持水分,也不会增加血压。这种沉积的主要决定因素之一是糖胺聚糖(GAGs)。通过与内皮表面层(ESL)中发现的GAG结合,钠被渗透失活,不会诱导同时的水滞留。因此,GAGs在稳态血压和钠调节方面具有重要作用。在目前的综述中,我们总结了GAG在ESL和BP调节中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microcirculation
Microcirculation 医学-外周血管病
CiteScore
5.00
自引率
4.20%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation. Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.
期刊最新文献
Microfluctuations in Capillary Lumens Independent of Pericyte Lining Density in the Anesthetized Mouse Cortex. Cerebral Microcirculation: Progress and Outlook of Laser Doppler Flowmetry in Neurosurgery and Neurointensive Care. Effects of Beraprost on Intestinal Microcirculation and Barrier Function in a Mouse Model of Renal Failure. Modeling Hemodynamics in Three-Dimensional, Biomimetic, Branched, Microfluidic, Vascular Networks. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1