Differential contagiousness of respiratory disease across the United States

IF 3 3区 医学 Q2 INFECTIOUS DISEASES Epidemics Pub Date : 2023-09-22 DOI:10.1016/j.epidem.2023.100718
Abhishek Mallela , Yen Ting Lin , William S. Hlavacek
{"title":"Differential contagiousness of respiratory disease across the United States","authors":"Abhishek Mallela ,&nbsp;Yen Ting Lin ,&nbsp;William S. Hlavacek","doi":"10.1016/j.epidem.2023.100718","DOIUrl":null,"url":null,"abstract":"<div><p>The initial contagiousness of a communicable disease within a given population is quantified by the basic reproduction number, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. This number depends on both pathogen and population properties. On the basis of compartmental models that reproduce Coronavirus Disease 2019 (COVID-19) surveillance data, we used Bayesian inference and the next-generation matrix approach to estimate region-specific <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> values for 280 of 384 metropolitan statistical areas (MSAs) in the United States (US), which account for 95% of the US population living in urban areas and 82% of the total population. We focused on MSA populations after finding that these populations were more uniformly impacted by COVID-19 than state populations. Our maximum a posteriori (MAP) estimates for <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> range from 1.9 to 7.7 and quantify the relative susceptibilities of regional populations to spread of respiratory diseases.</p></div><div><h3>One-Sentence Summary</h3><p>Initial contagiousness of Coronavirus Disease 2019 varied over a 4-fold range across urban areas of the United States.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"45 ","pages":"Article 100718"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436523000543","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

The initial contagiousness of a communicable disease within a given population is quantified by the basic reproduction number, R0. This number depends on both pathogen and population properties. On the basis of compartmental models that reproduce Coronavirus Disease 2019 (COVID-19) surveillance data, we used Bayesian inference and the next-generation matrix approach to estimate region-specific R0 values for 280 of 384 metropolitan statistical areas (MSAs) in the United States (US), which account for 95% of the US population living in urban areas and 82% of the total population. We focused on MSA populations after finding that these populations were more uniformly impacted by COVID-19 than state populations. Our maximum a posteriori (MAP) estimates for R0 range from 1.9 to 7.7 and quantify the relative susceptibilities of regional populations to spread of respiratory diseases.

One-Sentence Summary

Initial contagiousness of Coronavirus Disease 2019 varied over a 4-fold range across urban areas of the United States.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国各地呼吸道疾病的不同传染性。
传染病在给定人群中的初始传染性通过基本繁殖数R0来量化。这个数字取决于病原体和种群特性。在重现2019冠状病毒病(新冠肺炎)监测数据的划分模型的基础上,我们使用贝叶斯推理和下一代矩阵方法来估计美国384个大都市统计区(MSAs)中280个的区域特异性R0值,这些统计区占美国城市人口的95%和总人口的82%。我们将重点放在MSA人群上,因为我们发现这些人群比州人口更容易受到新冠肺炎的影响。我们对R0的最大后验(MAP)估计范围为1.9至7.7,并量化了地区人群对呼吸道疾病传播的相对易感性。一节课总结:2019冠状病毒疾病的初始传染性在美国城市地区的差异超过4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
期刊最新文献
Modelling COVID-19 in the North American region with a metapopulation network and Kalman filter Estimating the generation time for influenza transmission using household data in the United States Reconstructing the first COVID-19 pandemic wave with minimal data in England Retrospective modelling of the disease and mortality burden of the 1918–1920 influenza pandemic in Zurich, Switzerland Flusion: Integrating multiple data sources for accurate influenza predictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1