{"title":"Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development","authors":"Bing-Peng Liu, Bao-Zhen Hua","doi":"10.1111/imb.12878","DOIUrl":null,"url":null,"abstract":"<p>The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly <i>Panorpa liui</i> Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of <i>Ultrabithorax</i> (<i>Ubx</i>) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target <i>Distal-less</i> (<i>Dll</i>) expression but did not affect the expression levels of <i>Dll</i>. Knockdown of <i>abdominal-A</i> (<i>abd-A</i>) resulted in malformed segments, abnormal prolegs and disrupted <i>Dll</i> expression. The results demonstrate that the gene <i>Ubx</i> maintains an ancestral role of modulating A1 appendage fate without preventing <i>Dll</i> initiation, and a secondary adaptation of <i>abd-A</i> evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":"33 1","pages":"69-80"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12878","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of Ultrabithorax (Ubx) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target Distal-less (Dll) expression but did not affect the expression levels of Dll. Knockdown of abdominal-A (abd-A) resulted in malformed segments, abnormal prolegs and disrupted Dll expression. The results demonstrate that the gene Ubx maintains an ancestral role of modulating A1 appendage fate without preventing Dll initiation, and a secondary adaptation of abd-A evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).