{"title":"The cell volume-regulatory glycine transporter GLYT1 is activated following metallopeptidase-mediated detachment of the oocyte from the zona pellucida","authors":"Chyna S. Ortman, Jay M. Baltz","doi":"10.1002/mrd.23708","DOIUrl":null,"url":null,"abstract":"<p>Independent cell volume regulation is first acquired by the oocyte in two steps that occur during meiotic maturation: (1) activation of the glycine transporter GLYT1 (<i>Slc6a9</i>) that mediates the intracellular accumulation of glycine to provide osmotic support in the mature egg and early preimplantation embryo, and (2) release of the oocyte from the strong attachment to its rigid extracellular matrix shell, the zona pellucida (ZP). It was recently shown that oocyte-ZP detachment requires metallopeptidase activity that is proposed to cleave transmembrane ZP proteins connecting the oocyte to the ZP. It is unknown, however, how GLYT1 is activated. We hypothesized that oocyte-ZP detachment precedes and may be required for GLYT1 activation. In identically treated pools of oocytes, oocyte-ZP detachment occurred ~20 min before GLYT1 activation. In individual oocytes, GLYT1 activity was detected only in those that were mostly or fully detached. Blocking detachment using previously validated small molecule metallopeptidase inhibitors partly suppressed GLYT1 activation. However, removal of the ZP did not accelerate GLYT1 activation. This indicates that oocyte-ZP detachment or cleavage of transmembrane ZP proteins may be required for GLYT1 to become fully activated, or alternatively that metallopeptidase activity independently affects both detachment and GLYT1 activation.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 12","pages":"824-834"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23708","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrd.23708","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Independent cell volume regulation is first acquired by the oocyte in two steps that occur during meiotic maturation: (1) activation of the glycine transporter GLYT1 (Slc6a9) that mediates the intracellular accumulation of glycine to provide osmotic support in the mature egg and early preimplantation embryo, and (2) release of the oocyte from the strong attachment to its rigid extracellular matrix shell, the zona pellucida (ZP). It was recently shown that oocyte-ZP detachment requires metallopeptidase activity that is proposed to cleave transmembrane ZP proteins connecting the oocyte to the ZP. It is unknown, however, how GLYT1 is activated. We hypothesized that oocyte-ZP detachment precedes and may be required for GLYT1 activation. In identically treated pools of oocytes, oocyte-ZP detachment occurred ~20 min before GLYT1 activation. In individual oocytes, GLYT1 activity was detected only in those that were mostly or fully detached. Blocking detachment using previously validated small molecule metallopeptidase inhibitors partly suppressed GLYT1 activation. However, removal of the ZP did not accelerate GLYT1 activation. This indicates that oocyte-ZP detachment or cleavage of transmembrane ZP proteins may be required for GLYT1 to become fully activated, or alternatively that metallopeptidase activity independently affects both detachment and GLYT1 activation.
期刊介绍:
Molecular Reproduction and Development takes an integrated, systems-biology approach to understand the dynamic continuum of cellular, reproductive, and developmental processes. This journal fosters dialogue among diverse disciplines through primary research communications and educational forums, with the philosophy that fundamental findings within the life sciences result from a convergence of disciplines.
Increasingly, readers of the Journal need to be informed of diverse, yet integrated, topics impinging on their areas of interest. This requires an expansion in thinking towards non-traditional, interdisciplinary experimental design and data analysis.