Helena Beatriz de Carvalho Ruthner Batista, Luiz Fernando Pereira Vieira, Juliana Galera Castilho Kawai, Willian de Oliveira Fahl, Camila Mosca Barboza, Samira Achkar, Rafael de Novaes Oliveira, Paulo Eduardo Brandão, Pedro Carnieli Junior
{"title":"Dispersion and diversification of Lyssavirus rabies transmitted from haematophagous bats Desmodus rotundus: a phylogeographical study.","authors":"Helena Beatriz de Carvalho Ruthner Batista, Luiz Fernando Pereira Vieira, Juliana Galera Castilho Kawai, Willian de Oliveira Fahl, Camila Mosca Barboza, Samira Achkar, Rafael de Novaes Oliveira, Paulo Eduardo Brandão, Pedro Carnieli Junior","doi":"10.1007/s11262-023-02030-x","DOIUrl":null,"url":null,"abstract":"<p><p>Rabies is worldwide zoonosis caused by Lyssavirus rabies (RABV) a RNA negative sense virus with low level of fidelity during replication cycle. Nucleoprotein of RABV is the most conserved between all five proteins of the virus and is the most used gene for phylogenetic and phylogeographic studies. Despite of rabies been very important in Public Health concern, it demands continuous prophylactic care for herbivores with economic interest, such as cattle and horses. The main transmitter of RABV for these animals in Brazil is the hematophagous bats Desmodus rotundus. The aim of this study was to determine the dispersion over time and space of RABV transmitted by D. rotundus. Samples of RABV from the State of São Paulo (SP), Southeast Brazil isolated from the central nervous system (CNS) of cattle, were submitted to RNA extraction, RT-PCR, sequencing and phylogeographic analyzes with BEAST (Bayesian Evolutionary Analysis Sampling Trees) v 2.5 software. Was possible to identify high rate of diversification in starts sublineages of RABV what are correlated with a behavior of D. rotundus, the main transmitter of rabies to cattle. This study also highlights the importance of continuous monitoring of genetic lineages of RABV in Brazil.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"817-822"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-023-02030-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Rabies is worldwide zoonosis caused by Lyssavirus rabies (RABV) a RNA negative sense virus with low level of fidelity during replication cycle. Nucleoprotein of RABV is the most conserved between all five proteins of the virus and is the most used gene for phylogenetic and phylogeographic studies. Despite of rabies been very important in Public Health concern, it demands continuous prophylactic care for herbivores with economic interest, such as cattle and horses. The main transmitter of RABV for these animals in Brazil is the hematophagous bats Desmodus rotundus. The aim of this study was to determine the dispersion over time and space of RABV transmitted by D. rotundus. Samples of RABV from the State of São Paulo (SP), Southeast Brazil isolated from the central nervous system (CNS) of cattle, were submitted to RNA extraction, RT-PCR, sequencing and phylogeographic analyzes with BEAST (Bayesian Evolutionary Analysis Sampling Trees) v 2.5 software. Was possible to identify high rate of diversification in starts sublineages of RABV what are correlated with a behavior of D. rotundus, the main transmitter of rabies to cattle. This study also highlights the importance of continuous monitoring of genetic lineages of RABV in Brazil.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.