Enhancing subthreshold slope and ON-current in a simple iTFET with overlapping gate on source-contact, drain Schottky contact, and intrinsic SiGe-pocket

IF 4.703 3区 材料科学 Nanoscale Research Letters Pub Date : 2023-09-29 DOI:10.1186/s11671-023-03904-7
Jyi-Tsong Lin, Kuan-Pin Lin, Kai-Ming Cheng
{"title":"Enhancing subthreshold slope and ON-current in a simple iTFET with overlapping gate on source-contact, drain Schottky contact, and intrinsic SiGe-pocket","authors":"Jyi-Tsong Lin,&nbsp;Kuan-Pin Lin,&nbsp;Kai-Ming Cheng","doi":"10.1186/s11671-023-03904-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new novel simple iTFET with overlapping gate on source-contact (SGO), Drain Schottky Contact, and intrinsic SiGe pocket (Pocket-SGO iTFET). The aim is to achieve steep subthreshold swing (<i>S.S</i>) and high <i>I</i><sub>ON</sub> current. By optimizing the gate and source-contact overlap, the tunneling efficiency is significantly enhanced, while the ambipolar effect is suppressed. Additionally, using a Schottky contact at the drain/source, instead of ion implantation drain/source, reduces leakage current and thermal budget. Moreover, the tunneling region is replaced by an intrinsic SiGe pocket posing a narrower bandgap, which increases the probability of band-to-band tunneling and enhances the <i>I</i><sub>ON</sub> current. Our simulations are based on the feasibility of the actual process, thorough Sentaurus TCAD simulations demonstrate that the Pocket-SGO iTFET exhibits an average and minimum subthreshold swing of <i>S.S</i><sub>avg</sub> = 16.2 mV/Dec and <i>S.S</i><sub>min</sub> = 4.62 mV/Dec, respectively. At <i>V</i><sub>D</sub> = 0.2 V, the <i>I</i><sub>ON</sub> current is 1.81 <span>\\(\\times\\)</span> 10<sup>–6</sup> A/μm, and the <i>I</i><sub>ON</sub>/<i>I</i><sub>OFF</sub> ratio is 1.34 <span>\\(\\times\\)</span> 10<sup>9</sup>. The Pocket-SGO iTFET design shows great potential for ultra-low-power devices that are required for the Internet of Things (IoT) and AI applications.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03904-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new novel simple iTFET with overlapping gate on source-contact (SGO), Drain Schottky Contact, and intrinsic SiGe pocket (Pocket-SGO iTFET). The aim is to achieve steep subthreshold swing (S.S) and high ION current. By optimizing the gate and source-contact overlap, the tunneling efficiency is significantly enhanced, while the ambipolar effect is suppressed. Additionally, using a Schottky contact at the drain/source, instead of ion implantation drain/source, reduces leakage current and thermal budget. Moreover, the tunneling region is replaced by an intrinsic SiGe pocket posing a narrower bandgap, which increases the probability of band-to-band tunneling and enhances the ION current. Our simulations are based on the feasibility of the actual process, thorough Sentaurus TCAD simulations demonstrate that the Pocket-SGO iTFET exhibits an average and minimum subthreshold swing of S.Savg = 16.2 mV/Dec and S.Smin = 4.62 mV/Dec, respectively. At VD = 0.2 V, the ION current is 1.81 \(\times\) 10–6 A/μm, and the ION/IOFF ratio is 1.34 \(\times\) 109. The Pocket-SGO iTFET design shows great potential for ultra-low-power devices that are required for the Internet of Things (IoT) and AI applications.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在具有重叠栅极-源极接触、漏极-肖特基接触和本征SiGe袋的简单iTFET中增强亚阈值斜率和导通电流。
在本文中,我们提出了一种新的简单iTFET,它具有重叠的栅极-源极接触(SGO)、漏极-肖特基接触和本征SiGe口袋(口袋SGO-iTFET)。其目的是实现陡峭的亚阈值摆动(S.S)和高离子电流。通过优化栅极和源极接触重叠,显著提高了隧道效率,同时抑制了双极效应。此外,在漏极/源极使用肖特基接触,而不是离子注入漏极/漏极,减少了漏电流和热预算。此外,隧穿区被本征SiGe口袋所取代,该口袋具有更窄的带隙,这增加了带到带隧穿的概率并增强了离子电流。我们的模拟是基于实际过程的可行性,彻底的Sentaurus TCAD模拟表明,Pocket SGO iTFET表现出S.Savg的平均和最小亚阈值摆动 = 16.2 mV/Dec和S.Smin = 4.62mV/Dec。VD = 0.2 V,离子电流为1.81[公式:见正文]10-6 A/μm,离子/IOFF比为1.34[公式:参见正文]109。Pocket SGO iTFET设计在物联网(IoT)和人工智能应用所需的超低功耗设备方面显示出巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Novel loading protocol combines highly efficient encapsulation of exogenous therapeutic toxin with preservation of extracellular vesicles properties, uptake and cargo activity Viscoelastic modelling and analysis of two-dimensional woven CNT-based multiscale fibre reinforced composite material system InGaN blue resonant cavity micro-LED with RGY quantum dot layer for broad gamut, efficient displays Transport properties of mechanochemically synthesized copper (I) selenide for potential applications in energy conversion and storage Photodynamic impact of curcumin enhanced silver functionalized graphene nanocomposites on Candida virulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1