Lan Binh Thi Nguyen, Nguyen Thi Thanh Truc, Ngoc Tran Thi Nguyen, Dinh Khang Vu, Byeong-Kyu Lee
{"title":"A regional approach for health risk assessment of toxicants in plastic food containers.","authors":"Lan Binh Thi Nguyen, Nguyen Thi Thanh Truc, Ngoc Tran Thi Nguyen, Dinh Khang Vu, Byeong-Kyu Lee","doi":"10.1007/s43188-023-00194-0","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic food containers are being used popularly, generating a waste of about 115 million tons in Vietnam. Such waste is causing environmental and health issues. This study conducted a field survey with 250 local people and selected 59 samples out of 135 plastic food containers collected in Go Vap district, Vietnam. Collected plastic samples identified compositions were PET 13.6%, PP 28.8%, PS 16.9%, and 40.7% undefined plastics. Collected plastic samples were classified based on the plastic type using recycling code and quantitatively analyzed with X-ray fluorescence spectroscopy method to assess concentrations of Cd, Sb, Pb, Hg, Sn, Cr, Br, Cl, and S. Most of these collected plastic samples (91.5%) were found to contain 8/9 hazardous substances and most elements contained in these plastics were below their standard thresholds. These elements in plastic samples could be divided as the result into three hazard groups: (1) high hazard group (Sb, Cl, and S); (2) medium hazard group (Cr, Br and Hg); and (3) low hazard groups (Cd, Pb and Sn). Among substances in the high hazard group, element Sb was assessed for its migration because only Sb is regulated in Vietnam in QCVN 12-1: 2011/BYT. Substances of Cl, S, Cr, Br, and Hg (group 1, 2) do not have regulations related to the method of decontamination. Thus, additional health risks need to be assessed using the USEtox model. Finally, this study proposed a screening process to assess the risk of toxicity of elements contained in plastic food containers through ISO 31000:2018.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43188-023-00194-0.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"39 4","pages":"681-692"},"PeriodicalIF":1.6000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-023-00194-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic food containers are being used popularly, generating a waste of about 115 million tons in Vietnam. Such waste is causing environmental and health issues. This study conducted a field survey with 250 local people and selected 59 samples out of 135 plastic food containers collected in Go Vap district, Vietnam. Collected plastic samples identified compositions were PET 13.6%, PP 28.8%, PS 16.9%, and 40.7% undefined plastics. Collected plastic samples were classified based on the plastic type using recycling code and quantitatively analyzed with X-ray fluorescence spectroscopy method to assess concentrations of Cd, Sb, Pb, Hg, Sn, Cr, Br, Cl, and S. Most of these collected plastic samples (91.5%) were found to contain 8/9 hazardous substances and most elements contained in these plastics were below their standard thresholds. These elements in plastic samples could be divided as the result into three hazard groups: (1) high hazard group (Sb, Cl, and S); (2) medium hazard group (Cr, Br and Hg); and (3) low hazard groups (Cd, Pb and Sn). Among substances in the high hazard group, element Sb was assessed for its migration because only Sb is regulated in Vietnam in QCVN 12-1: 2011/BYT. Substances of Cl, S, Cr, Br, and Hg (group 1, 2) do not have regulations related to the method of decontamination. Thus, additional health risks need to be assessed using the USEtox model. Finally, this study proposed a screening process to assess the risk of toxicity of elements contained in plastic food containers through ISO 31000:2018.
Supplementary information: The online version contains supplementary material available at 10.1007/s43188-023-00194-0.
期刊介绍:
Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.