BayesLDM: A Domain-specific Modeling Language for Probabilistic Modeling of Longitudinal Data.

Karine Tung, Steven De La Torre, Mohamed El Mistiri, Rebecca Braga De Braganca, Eric Hekler, Misha Pavel, Daniel Rivera, Pedja Klasnja, Donna Spruijt-Metz, Benjamin M Marlin
{"title":"BayesLDM: A Domain-specific Modeling Language for Probabilistic Modeling of Longitudinal Data.","authors":"Karine Tung,&nbsp;Steven De La Torre,&nbsp;Mohamed El Mistiri,&nbsp;Rebecca Braga De Braganca,&nbsp;Eric Hekler,&nbsp;Misha Pavel,&nbsp;Daniel Rivera,&nbsp;Pedja Klasnja,&nbsp;Donna Spruijt-Metz,&nbsp;Benjamin M Marlin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we present BayesLDM, a library for Bayesian longitudinal data modeling consisting of a high-level modeling language with specific features for modeling complex multivariate time series data coupled with a compiler that can produce optimized probabilistic program code for performing inference in the specified model. BayesLDM supports modeling of Bayesian network models with a specific focus on the efficient, declarative specification of dynamic Bayesian Networks (DBNs). The BayesLDM compiler combines a model specification with inspection of available data and outputs code for performing Bayesian inference for unknown model parameters while simultaneously handling missing data. These capabilities have the potential to significantly accelerate iterative modeling workflows in domains that involve the analysis of complex longitudinal data by abstracting away the process of producing computationally efficient probabilistic inference code. We describe the BayesLDM system components, evaluate the efficiency of representation and inference optimizations and provide an illustrative example of the application of the system to analyzing heterogeneous and partially observed mobile health data.</p>","PeriodicalId":93843,"journal":{"name":"...IEEE...International Conference on Connected Health: Applications, Systems and Engineering Technologies. IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies","volume":"2022 ","pages":"78-90"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512697/pdf/nihms-1929510.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"...IEEE...International Conference on Connected Health: Applications, Systems and Engineering Technologies. IEEE International Conference on Connected Health: Applications, Systems and Engineering Technologies","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present BayesLDM, a library for Bayesian longitudinal data modeling consisting of a high-level modeling language with specific features for modeling complex multivariate time series data coupled with a compiler that can produce optimized probabilistic program code for performing inference in the specified model. BayesLDM supports modeling of Bayesian network models with a specific focus on the efficient, declarative specification of dynamic Bayesian Networks (DBNs). The BayesLDM compiler combines a model specification with inspection of available data and outputs code for performing Bayesian inference for unknown model parameters while simultaneously handling missing data. These capabilities have the potential to significantly accelerate iterative modeling workflows in domains that involve the analysis of complex longitudinal data by abstracting away the process of producing computationally efficient probabilistic inference code. We describe the BayesLDM system components, evaluate the efficiency of representation and inference optimizations and provide an illustrative example of the application of the system to analyzing heterogeneous and partially observed mobile health data.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BayesLDM:一种用于纵向数据概率建模的特定领域建模语言。
在本文中,我们提出了BayesLDM,这是一个用于贝叶斯纵向数据建模的库,由一种高级建模语言组成,该语言具有建模复杂多变量时间序列数据的特定功能,并与一个编译器耦合,该编译器可以生成优化的概率程序代码,用于在指定模型中执行推理。BayesLDM支持贝叶斯网络模型的建模,特别关注动态贝叶斯网络(DBN)的高效、声明性规范。BayesLDM编译器将模型规范与可用数据的检查相结合,并输出用于对未知模型参数执行贝叶斯推理的代码,同时处理丢失的数据。这些功能有可能通过抽象产生计算高效的概率推理代码的过程,显著加快涉及复杂纵向数据分析的领域中的迭代建模工作流程。我们描述了BayesLDM系统组件,评估了表示和推理优化的效率,并提供了该系统应用于分析异构和部分观察到的移动健康数据的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ToPick: Time-of-Pickup Measurement for the Elderly using Wearables. Gait-Guard: Turn-aware Freezing of Gait Detection for Non-intrusive Intervention Systems. HealthGAT: Node Classifications in Electronic Health Records using Graph Attention Networks. FoG-Finder: Real-time Freezing of Gait Detection and Treatment. Parkinson's Disease Action Tremor Detection with Supervised-Leaning Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1