Docetaxel radiosensitizes castration-resistant prostate cancer by downregulating CAV-1.

Kevin J Tu, Sanjit K Roy, Zachery Keepers, Manas R Gartia, Hem D Shukla, Nrusingh C Biswal
{"title":"Docetaxel radiosensitizes castration-resistant prostate cancer by downregulating CAV-1.","authors":"Kevin J Tu, Sanjit K Roy, Zachery Keepers, Manas R Gartia, Hem D Shukla, Nrusingh C Biswal","doi":"10.1080/09553002.2023.2263553","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy. Here, we investigate the effectiveness and molecular characteristics of DXL and radiation combination therapy in vitro.</p><p><strong>Materials and methods: </strong>We used live/dead assays to determine the IC<sub>50</sub> of DXL for PC3, DU-145, and TRAMP-C1 cells. Colony formation assay was used to determine the radioresponse of the same cells treated with radiation with/without IC<sub>50</sub> DXL (4, 8, and 12 Gy). We performed gene expression analysis on public transcriptomic data collected from human-derived prostate cancer cell lines (C4-2, PC3, DU-145, and LNCaP) treated with DXL for 8, 16, and 72 hours. Cell cycle arrest and protein expression were assessed using flow cytometry and western blot, respectively.</p><p><strong>Results: </strong>Compared to radiation alone, combination therapy with DXL significantly increased CRPC death in PC3 (1.48-fold, <i>p</i> < .0001), DU-145 (1.64-fold, <i>p</i> < .05), and TRAMP-C1 (1.13-fold, <i>p</i> < .05) at 4 Gy of radiation. Gene expression of CRPC treated with DXL revealed downregulated genes related to cell cycle regulation and upregulated genes related to immune activation and oxidative stress. Confirming the results, G2/M cell cycle arrest was significantly increased after treatment with DXL and radiation. CAV-1 protein expression was decreased after DXL treatment in a dose-dependent manner; furthermore, CAV-1 copy number was strongly associated with poor response to therapy in CRPC patients.</p><p><strong>Conclusions: </strong>Our results suggest that DXL sensitizes CRPC cells to radiation by downregulating CAV-1. DXL + radiation combination therapy may be effective at treating CRPC, especially subtypes associated with high CAV-1 expression, and should be studied further.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"256-267"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2023.2263553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Docetaxel (DXL), a noted radiosensitizer, is one of the few chemotherapy drugs approved for castration-resistant prostate cancer (CRPC), though only a fraction of CRPCs respond to it. CAV-1, a critical regulator of radioresistance, has been known to modulate DXL and radiation effects. Combining DXL with radiotherapy may create a synergistic anticancer effect through CAV-1 and improve CRPC patients' response to therapy. Here, we investigate the effectiveness and molecular characteristics of DXL and radiation combination therapy in vitro.

Materials and methods: We used live/dead assays to determine the IC50 of DXL for PC3, DU-145, and TRAMP-C1 cells. Colony formation assay was used to determine the radioresponse of the same cells treated with radiation with/without IC50 DXL (4, 8, and 12 Gy). We performed gene expression analysis on public transcriptomic data collected from human-derived prostate cancer cell lines (C4-2, PC3, DU-145, and LNCaP) treated with DXL for 8, 16, and 72 hours. Cell cycle arrest and protein expression were assessed using flow cytometry and western blot, respectively.

Results: Compared to radiation alone, combination therapy with DXL significantly increased CRPC death in PC3 (1.48-fold, p < .0001), DU-145 (1.64-fold, p < .05), and TRAMP-C1 (1.13-fold, p < .05) at 4 Gy of radiation. Gene expression of CRPC treated with DXL revealed downregulated genes related to cell cycle regulation and upregulated genes related to immune activation and oxidative stress. Confirming the results, G2/M cell cycle arrest was significantly increased after treatment with DXL and radiation. CAV-1 protein expression was decreased after DXL treatment in a dose-dependent manner; furthermore, CAV-1 copy number was strongly associated with poor response to therapy in CRPC patients.

Conclusions: Our results suggest that DXL sensitizes CRPC cells to radiation by downregulating CAV-1. DXL + radiation combination therapy may be effective at treating CRPC, especially subtypes associated with high CAV-1 expression, and should be studied further.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多西他赛通过下调CAV-1对去势抵抗性前列腺癌症放射增敏。
目的:多西他赛(dox)是一种著名的放射增敏剂,是为数不多的被批准用于去势耐受性癌症(CRPC)的化疗药物之一,尽管只有一小部分CRPC对其有反应。CAV-1是一种重要的放射耐受调节因子,已知可调节dox和辐射效应。将dox与放疗相结合可以通过CAV-1产生协同抗癌作用,并改善CRPC患者对治疗的反应。在这里,我们在体外研究dox和放射联合治疗的有效性和分子特征。材料和方法:我们使用活/死分析来测定dox对PC3、DU-145和TRAMP-C1细胞的IC50。集落形成测定法用于测定用IC50-dox(4,8,12 Gy)。我们对从用dox治疗8、16和72天的人源性前列腺癌症细胞系(C4-2、PC3、DU-145、LNCaP)收集的公共转录组数据进行了基因表达分析 小时。分别使用流式细胞术和蛋白质印迹评估细胞周期停滞和蛋白质表达。结果:与单独放疗相比,dox联合治疗显著增加了PC3患者的CRPC死亡(1.48倍,p 结论:我们的研究结果表明,dox通过下调CAV-1使CRPC细胞对辐射敏感。Dox + 放射联合治疗可能对治疗CRPC有效,尤其是与CAV-1高表达相关的亚型,应进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microbeam radiation therapy for lung cancer: a review of experimental setups and biological endpoints in preclinical studies. Sensitive organelles of U251 MG glioblastomas to boron neutron capture therapy. Effects of low dose rate radiotherapy on pain relief, performance score, and quality of life in patients with knee osteoarthritis; a double-blind sham-controlled randomized clinical trial. Exploring the interplay of selenoproteins and mir-675 in breast cancer: a focus on radiotherapy effects. Significant interruptions in radiotherapy during curative treatment for prostate cancer are correlated with poorer oncological outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1