Cancer-associated fibroblasts secret extracellular vesicles to support cell proliferation and epithelial-mesenchymal transition in laryngeal squamous cell carcinoma
{"title":"Cancer-associated fibroblasts secret extracellular vesicles to support cell proliferation and epithelial-mesenchymal transition in laryngeal squamous cell carcinoma","authors":"Tingting Li , Linli Tian , Jing Cao , Ming Liu","doi":"10.1016/j.mcp.2023.101934","DOIUrl":null,"url":null,"abstract":"<div><p>As the critical components of tumor microenvironment, cancer-associated fibroblasts (CAFs) support the development of various type of cancers, including laryngeal squamous cell carcinoma (LSCC), but the detailed molecular mechanisms by which cancer-associated fibroblasts interact with LSCC cells to facilitate its progression have not been fully uncovered. In the present study, by analyzing the contents from normal fibroblasts (NFs) and cancer-associated fibroblasts-derived extracellular vesicles (EVs) with Real-Time qPCR analysis, we found that the tumor-initiating LncRNA TUC338 was significantly upregulated in the cancer-associated fibroblasts-derived extracellular vesicles, compared to the normal fibroblasts-secreted extracellular vesicles. Further experiments confirmed that cancer-associated fibroblasts-derived extracellular vesicles promoted cell proliferation, colony formation abilities, epithelial-mesenchymal transition (EMT) and tumorigenesis of LSCC cells via delivering LncRNA TUC338. The mechanical experiments verified that LncRNA TUC338 was stabilized by METTL3/YTHDF1-mediated N6-methyladenosine (m6A) modifications, and elevated LncRNA TUC338 sponged miR-8485 to upregulate chromobox homolog 2 (CBX2) in LSCC cells in a competing endogenous RNA mechanisms-dependent manner. Moreover, our rescue experiments evidenced that cancer-associated fibroblasts-derived LncRNA TUC338-containing extracellular vesicles-induced supportive effects in LSCC aggressiveness were all abrogated by overexpressing miR-8485 and silencing CBX2. Collectively, this study is the first to identify a novel m6A/LncRNA TUC338/miR-8485/CBX2 axis in CAFs-EVs-mediated LSCC development, and to show its potential as a diagnostic biomarker for LSCC.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850823000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
As the critical components of tumor microenvironment, cancer-associated fibroblasts (CAFs) support the development of various type of cancers, including laryngeal squamous cell carcinoma (LSCC), but the detailed molecular mechanisms by which cancer-associated fibroblasts interact with LSCC cells to facilitate its progression have not been fully uncovered. In the present study, by analyzing the contents from normal fibroblasts (NFs) and cancer-associated fibroblasts-derived extracellular vesicles (EVs) with Real-Time qPCR analysis, we found that the tumor-initiating LncRNA TUC338 was significantly upregulated in the cancer-associated fibroblasts-derived extracellular vesicles, compared to the normal fibroblasts-secreted extracellular vesicles. Further experiments confirmed that cancer-associated fibroblasts-derived extracellular vesicles promoted cell proliferation, colony formation abilities, epithelial-mesenchymal transition (EMT) and tumorigenesis of LSCC cells via delivering LncRNA TUC338. The mechanical experiments verified that LncRNA TUC338 was stabilized by METTL3/YTHDF1-mediated N6-methyladenosine (m6A) modifications, and elevated LncRNA TUC338 sponged miR-8485 to upregulate chromobox homolog 2 (CBX2) in LSCC cells in a competing endogenous RNA mechanisms-dependent manner. Moreover, our rescue experiments evidenced that cancer-associated fibroblasts-derived LncRNA TUC338-containing extracellular vesicles-induced supportive effects in LSCC aggressiveness were all abrogated by overexpressing miR-8485 and silencing CBX2. Collectively, this study is the first to identify a novel m6A/LncRNA TUC338/miR-8485/CBX2 axis in CAFs-EVs-mediated LSCC development, and to show its potential as a diagnostic biomarker for LSCC.