Myricetin causes site-specific DNA damage via reactive oxygen species generation by redox interactions with copper ions

IF 2.3 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Mutation research. Genetic toxicology and environmental mutagenesis Pub Date : 2023-10-01 DOI:10.1016/j.mrgentox.2023.503694
Yuichiro Hirao , Hatasu Kobayashi , Yurie Mori , Shinya Kato , Shosuke Kawanishi , Mariko Murata , Shinji Oikawa
{"title":"Myricetin causes site-specific DNA damage via reactive oxygen species generation by redox interactions with copper ions","authors":"Yuichiro Hirao ,&nbsp;Hatasu Kobayashi ,&nbsp;Yurie Mori ,&nbsp;Shinya Kato ,&nbsp;Shosuke Kawanishi ,&nbsp;Mariko Murata ,&nbsp;Shinji Oikawa","doi":"10.1016/j.mrgentox.2023.503694","DOIUrl":null,"url":null,"abstract":"<div><p>Myricetin (MYR), found in tea and berries, may have preventive effects on diseases, including Alzheimer’s disease and cancer. However, MYR is also a mutagen, inducing DNA damage in the presence of metal ions. We have studied the molecular mechanisms of DNA damage by MYR in the presence of Cu(II) (MYR+Cu). Using <sup>32</sup>P-5′-end-labeled DNA fragments, we analyzed site-specific DNA damage caused by MYR+Cu. MYR+Cu caused concentration-dependent DNA strand breaks and base alterations, leading to cleavage of DNA at thymine, cytosine, and guanine nucleotides. Formation of the oxidative DNA damage indicator, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), in calf thymus DNA was increased by MYR+Cu. The production of 8-oxodG in MYR-treated HL-60 cells was significantly higher than in HP100 cells, which are more resistant to H<sub>2</sub>O<sub>2</sub> than are HL-60 cells. Reactive oxygen species (ROS) scavengers were used to elucidate the mechanism of DNA damage. DNA damage was not inhibited by typical free hydroxyl radical (<sup>•</sup>OH) scavengers such as ethanol, mannitol, or sodium formate. However, methional, catalase, and bathocuproine inhibited DNA damage induced by MYR+Cu. These results suggest that H<sub>2</sub>O<sub>2</sub>, Cu(I), and ROS other than <sup>•</sup>OH are involved in MYR+Cu-induced DNA damage. We conclude that the Cu(I)/Cu(II) redox cycle and concomitant H<sub>2</sub>O<sub>2</sub> production via autoxidation of MYR generate a complex of H<sub>2</sub>O<sub>2</sub> and Cu(I), probably Cu(I)-hydroperoxide, which induces oxidative DNA damage.</p></div>","PeriodicalId":18799,"journal":{"name":"Mutation research. Genetic toxicology and environmental mutagenesis","volume":"891 ","pages":"Article 503694"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation research. Genetic toxicology and environmental mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383571823001122","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Myricetin (MYR), found in tea and berries, may have preventive effects on diseases, including Alzheimer’s disease and cancer. However, MYR is also a mutagen, inducing DNA damage in the presence of metal ions. We have studied the molecular mechanisms of DNA damage by MYR in the presence of Cu(II) (MYR+Cu). Using 32P-5′-end-labeled DNA fragments, we analyzed site-specific DNA damage caused by MYR+Cu. MYR+Cu caused concentration-dependent DNA strand breaks and base alterations, leading to cleavage of DNA at thymine, cytosine, and guanine nucleotides. Formation of the oxidative DNA damage indicator, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), in calf thymus DNA was increased by MYR+Cu. The production of 8-oxodG in MYR-treated HL-60 cells was significantly higher than in HP100 cells, which are more resistant to H2O2 than are HL-60 cells. Reactive oxygen species (ROS) scavengers were used to elucidate the mechanism of DNA damage. DNA damage was not inhibited by typical free hydroxyl radical (OH) scavengers such as ethanol, mannitol, or sodium formate. However, methional, catalase, and bathocuproine inhibited DNA damage induced by MYR+Cu. These results suggest that H2O2, Cu(I), and ROS other than OH are involved in MYR+Cu-induced DNA damage. We conclude that the Cu(I)/Cu(II) redox cycle and concomitant H2O2 production via autoxidation of MYR generate a complex of H2O2 and Cu(I), probably Cu(I)-hydroperoxide, which induces oxidative DNA damage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杨梅素通过与铜离子的氧化还原相互作用产生活性氧,引起位点特异性DNA损伤。
在茶和浆果中发现的杨梅素(MYR)可能对包括阿尔茨海默病和癌症在内的疾病具有预防作用。然而,MYR也是一种诱变剂,在金属离子存在的情况下诱导DNA损伤。我们研究了在Cu(II)(MYR+Cu)存在下MYR对DNA损伤的分子机制。使用32P-5’端标记的DNA片段,我们分析了MYR+Cu引起的位点特异性DNA损伤。MYR+Cu引起浓度依赖性DNA链断裂和碱基改变,导致DNA在胸腺嘧啶、胞嘧啶和鸟嘌呤核苷酸处切割。MYR+Cu增加了小牛胸腺DNA中氧化DNA损伤指标8-氧-7,8-二氢-2'-脱氧鸟苷(8-氧代脱氧鸟苷)的形成。在MYR处理的HL-60细胞中8-氧代dG的产生显著高于HP100细胞,HP100细胞比HL-60细胞更耐H2O2。活性氧清除剂用于阐明DNA损伤的机制。典型的自由羟基清除剂(•OH)如乙醇、甘露醇或甲酸钠不能抑制DNA损伤。然而,甲氧酸、过氧化氢酶和巴库丙碱抑制MYR+Cu诱导的DNA损伤。这些结果表明,H2O2、Cu(I)和•OH以外的ROS参与了MYR+Cu诱导的DNA损伤。我们得出的结论是,Cu(I)/Cu(II)氧化还原循环和伴随的通过MYR的自氧化产生H2O2会产生H2O2和Cu(Ⅰ)的复合物,可能是铜(Ⅰ)-氢过氧化物,从而诱导DNA氧化损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
84
审稿时长
105 days
期刊介绍: Mutation Research - Genetic Toxicology and Environmental Mutagenesis (MRGTEM) publishes papers advancing knowledge in the field of genetic toxicology. Papers are welcomed in the following areas: New developments in genotoxicity testing of chemical agents (e.g. improvements in methodology of assay systems and interpretation of results). Alternatives to and refinement of the use of animals in genotoxicity testing. Nano-genotoxicology, the study of genotoxicity hazards and risks related to novel man-made nanomaterials. Studies of epigenetic changes in relation to genotoxic effects. The use of structure-activity relationships in predicting genotoxic effects. The isolation and chemical characterization of novel environmental mutagens. The measurement of genotoxic effects in human populations, when accompanied by quantitative measurements of environmental or occupational exposures. The application of novel technologies for assessing the hazard and risks associated with genotoxic substances (e.g. OMICS or other high-throughput approaches to genotoxicity testing). MRGTEM is now accepting submissions for a new section of the journal: Current Topics in Genotoxicity Testing, that will be dedicated to the discussion of current issues relating to design, interpretation and strategic use of genotoxicity tests. This section is envisaged to include discussions relating to the development of new international testing guidelines, but also to wider topics in the field. The evaluation of contrasting or opposing viewpoints is welcomed as long as the presentation is in accordance with the journal''s aims, scope, and policies.
期刊最新文献
Introduction Investigation of genetic instability in patients with Diabetes Mellitus type I, II and LADA using buccal micronucleus cytome assay Genotoxicity analysis of a flame retardant, aluminum diethylphosphinate In vitro hepatic 3D cell models and their application in genetic toxicology: A systematic review Disperse Red 1 azo dye: Consequences of low-dose/low-concentration exposures in mice and zebrafish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1