Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance.

IF 1.7 4区 医学 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology Pub Date : 2023-09-30 eCollection Date: 2023-09-01 DOI:10.2478/aiht-2023-74-3717
Vanessa Rogga, Ivan Kosalec
{"title":"Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance.","authors":"Vanessa Rogga,&nbsp;Ivan Kosalec","doi":"10.2478/aiht-2023-74-3717","DOIUrl":null,"url":null,"abstract":"<p><p>Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes.</p>","PeriodicalId":55462,"journal":{"name":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","volume":"74 3","pages":"145-166"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/ab/aiht-74-3-aiht-2023-74-3717.PMC10549895.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/aiht-2023-74-3717","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解开脂多糖的锚:脂质A结构修饰系统为解决多粘菌素耐药性提供了诊断和治疗选择。
多粘菌素抗生素是治疗重症监护室感染多重耐药革兰氏阴性菌患者的最后手段。由于它们的聚阳离子结构,它们的作用模式基于与脂多糖(LPS)的带负电荷的脂质A部分的离子相互作用。最普遍的多粘菌素抗性机制涉及脂质A的共价修饰:添加阳离子糖4-氨基-L-阿拉伯糖(L-Ara4N)和/或磷酸乙醇胺(pEtN)。脂质A的修饰结构具有较低的净负电荷,导致多粘菌素的排斥作用和细菌对膜破坏的抵抗力。编码参与这些修饰的酶系统的基因可以通过染色体或移动遗传元件转移。因此,开发了新的电阻诊断方法。另一方面,干扰这些酶系统可能为药物发现提供新的治疗靶点。这篇文献综述的重点是基于脂质A结构变化的诊断方法以及干扰这些变化的分子的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology
Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-TOXICOLOGY
CiteScore
3.50
自引率
4.80%
发文量
26
审稿时长
6-12 weeks
期刊介绍: Archives of Industrial Hygiene and Toxicology (abbr. Arh Hig Rada Toksikol) is a peer-reviewed biomedical scientific quarterly that publishes contributions relevant to all aspects of environmental and occupational health and toxicology.
期刊最新文献
Bis(amino acidato)copper(II) compounds in blood plasma: a review of computed structural properties and amino acid affinities for Cu2+ informing further pharmacological research. Difference between hand and forearm transepidermal water loss and skin pH as an improved method to biomonitor occupational hand eczema: our findings in healthcare workers. Does organisational myopia mediate the effect of occupational health and safety practices on the risk of occupational accidents in Turkish healthcare institutions? Factors predicting the level of vaccine protection against hepatitis B virus infection among physicians and nurses in Šabac, Serbia. Justice sensitivity among nurses and physiotherapists in a Croatian rehabilitation hospital.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1