Improved fMRI-based pain prediction using Bayesian group-wise functional registration.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-07-01 DOI:10.1093/biostatistics/kxad026
Guoqing Wang, Abhirup Datta, Martin A Lindquist
{"title":"Improved fMRI-based pain prediction using Bayesian group-wise functional registration.","authors":"Guoqing Wang, Abhirup Datta, Martin A Lindquist","doi":"10.1093/biostatistics/kxad026","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the field of neuroimaging has undergone a paradigm shift, moving away from the traditional brain mapping approach towards the development of integrated, multivariate brain models that can predict categories of mental events. However, large interindividual differences in both brain anatomy and functional localization after standard anatomical alignment remain a major limitation in performing this type of analysis, as it leads to feature misalignment across subjects in subsequent predictive models. This article addresses this problem by developing and validating a new computational technique for reducing misalignment across individuals in functional brain systems by spatially transforming each subject's functional data to a common latent template map. Our proposed Bayesian functional group-wise registration approach allows us to assess differences in brain function across subjects and individual differences in activation topology. We achieve the probabilistic registration with inverse-consistency by utilizing the generalized Bayes framework with a loss function for the symmetric group-wise registration. It models the latent template with a Gaussian process, which helps capture spatial features in the template, producing a more precise estimation. We evaluate the method in simulation studies and apply it to data from an fMRI study of thermal pain, with the goal of using functional brain activity to predict physical pain. We find that the proposed approach allows for improved prediction of reported pain scores over conventional approaches. Received on 2 January 2017. Editorial decision on 8 June 2021.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the field of neuroimaging has undergone a paradigm shift, moving away from the traditional brain mapping approach towards the development of integrated, multivariate brain models that can predict categories of mental events. However, large interindividual differences in both brain anatomy and functional localization after standard anatomical alignment remain a major limitation in performing this type of analysis, as it leads to feature misalignment across subjects in subsequent predictive models. This article addresses this problem by developing and validating a new computational technique for reducing misalignment across individuals in functional brain systems by spatially transforming each subject's functional data to a common latent template map. Our proposed Bayesian functional group-wise registration approach allows us to assess differences in brain function across subjects and individual differences in activation topology. We achieve the probabilistic registration with inverse-consistency by utilizing the generalized Bayes framework with a loss function for the symmetric group-wise registration. It models the latent template with a Gaussian process, which helps capture spatial features in the template, producing a more precise estimation. We evaluate the method in simulation studies and apply it to data from an fMRI study of thermal pain, with the goal of using functional brain activity to predict physical pain. We find that the proposed approach allows for improved prediction of reported pain scores over conventional approaches. Received on 2 January 2017. Editorial decision on 8 June 2021.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用贝叶斯分组功能配准改进了基于fMRI的疼痛预测。
近年来,神经成像领域发生了范式转变,从传统的大脑映射方法转向开发能够预测各类心理事件的综合、多变量大脑模型。然而,标准解剖比对后,大脑解剖和功能定位的巨大个体差异仍然是进行此类分析的主要限制,因为这会导致后续预测模型中受试者之间的特征错位。本文通过开发和验证一种新的计算技术来解决这个问题,该技术通过将每个受试者的功能数据空间转换为一个公共的潜在模板图来减少大脑功能系统中个体之间的错位。我们提出的贝叶斯功能分组配准方法使我们能够评估受试者大脑功能的差异以及激活拓扑的个体差异。我们利用具有损失函数的广义贝叶斯框架实现了具有逆一致性的概率配准。它使用高斯过程对潜在模板进行建模,这有助于捕捉模板中的空间特征,从而产生更精确的估计。我们在模拟研究中评估了这种方法,并将其应用于热疼痛功能磁共振成像研究的数据,目的是利用大脑功能活动来预测身体疼痛。我们发现,与传统方法相比,所提出的方法可以改进对报告的疼痛评分的预测。2017年1月2日收到。2021年6月8日的编辑决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1