Optimal Feedback Control for the Proportion of Energy Cost in the Upper-Arm Reaching Movement

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2023-10-10 DOI:10.1162/neco_a_01614
Yoshiaki Taniai
{"title":"Optimal Feedback Control for the Proportion of Energy Cost in the Upper-Arm Reaching Movement","authors":"Yoshiaki Taniai","doi":"10.1162/neco_a_01614","DOIUrl":null,"url":null,"abstract":"The minimum expected energy cost model, which has been proposed as one of the optimization principles for movement planning, can reproduce many characteristics of the human upper-arm reaching movement when signal-dependent noise and the co-contraction of the antagonist’s muscles are considered. Regarding the optimization principles, discussion has been mainly based on feedforward control; however, there is debate as to whether the central nervous system uses a feedforward or feedback control process. Previous studies have shown that feedback control based on the modified linear-quadratic gaussian (LQG) control, including multiplicative noise, can reproduce many characteristics of the reaching movement. Although the cost of the LQG control consists of state and energy costs, the relationship between the energy cost and the characteristics of the reaching movement in the LQG control has not been studied. In this work, I investigated how the optimal movement based on the LQG control varied with the proportion of energy cost, assuming that the central nervous system used feedback control. When the cost contained specific proportions of energy cost, the optimal movement reproduced the characteristics of the reaching movement. This result shows that energy cost is essential in both feedforward and feedback control for reproducing the characteristics of the upper-arm reaching movement.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10304660/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The minimum expected energy cost model, which has been proposed as one of the optimization principles for movement planning, can reproduce many characteristics of the human upper-arm reaching movement when signal-dependent noise and the co-contraction of the antagonist’s muscles are considered. Regarding the optimization principles, discussion has been mainly based on feedforward control; however, there is debate as to whether the central nervous system uses a feedforward or feedback control process. Previous studies have shown that feedback control based on the modified linear-quadratic gaussian (LQG) control, including multiplicative noise, can reproduce many characteristics of the reaching movement. Although the cost of the LQG control consists of state and energy costs, the relationship between the energy cost and the characteristics of the reaching movement in the LQG control has not been studied. In this work, I investigated how the optimal movement based on the LQG control varied with the proportion of energy cost, assuming that the central nervous system used feedback control. When the cost contained specific proportions of energy cost, the optimal movement reproduced the characteristics of the reaching movement. This result shows that energy cost is essential in both feedforward and feedback control for reproducing the characteristics of the upper-arm reaching movement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上臂伸展运动能量消耗比例的最优反馈控制。
最小期望能量成本模型是运动规划的优化原则之一,当考虑到信号依赖性噪声和对手肌肉的共同收缩时,该模型可以再现人类上臂伸展运动的许多特征。关于优化原理,讨论主要基于前馈控制;然而,关于中枢神经系统是使用前馈控制过程还是使用反馈控制过程,存在争议。先前的研究表明,基于改进的线性二次高斯(LQG)控制的反馈控制,包括乘性噪声,可以再现到达运动的许多特性。尽管LQG控制的成本由状态成本和能量成本组成,但尚未研究LQG控制中能量成本与到达运动特性之间的关系。在这项工作中,我研究了基于LQG控制的最优运动如何随着能量成本的比例而变化,假设中枢神经系统使用反馈控制。当成本包含特定比例的能量成本时,最佳运动再现了到达运动的特征。这一结果表明,能量成本在前馈和反馈控制中都是至关重要的,以再现上臂伸展运动的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Associative Learning and Active Inference. Deep Nonnegative Matrix Factorization with Beta Divergences. KLIF: An Optimized Spiking Neuron Unit for Tuning Surrogate Gradient Function. ℓ 1 -Regularized ICA: A Novel Method for Analysis of Task-Related fMRI Data. Latent Space Bayesian Optimization With Latent Data Augmentation for Enhanced Exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1