{"title":"ChatGPT in action: Harnessing artificial intelligence potential and addressing ethical challenges in medicine, education, and scientific research.","authors":"Madhan Jeyaraman, Swaminathan Ramasubramanian, Sangeetha Balaji, Naveen Jeyaraman, Arulkumar Nallakumarasamy, Shilpa Sharma","doi":"10.5662/wjm.v13.i4.170","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) tools, like OpenAI's Chat Generative Pre-trained Transformer (ChatGPT), hold considerable potential in healthcare, academia, and diverse industries. Evidence demonstrates its capability at a medical student level in standardized tests, suggesting utility in medical education, radiology reporting, genetics research, data optimization, and drafting repetitive texts such as discharge summaries. Nevertheless, these tools should augment, not supplant, human expertise. Despite promising applications, ChatGPT confronts limitations, including critical thinking tasks and generating false references, necessitating stringent cross-verification. Ensuing concerns, such as potential misuse, bias, blind trust, and privacy, underscore the need for transparency, accountability, and clear policies. Evaluations of AI-generated content and preservation of academic integrity are critical. With responsible use, AI can significantly improve healthcare, academia, and industry without compromising integrity and research quality. For effective and ethical AI deployment, collaboration amongst AI developers, researchers, educators, and policymakers is vital. The development of domain-specific tools, guidelines, regulations, and the facilitation of public dialogue must underpin these endeavors to responsibly harness AI's potential.</p>","PeriodicalId":94271,"journal":{"name":"World journal of methodology","volume":"13 4","pages":"170-178"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4b/d4/WJM-13-170.PMC10523250.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5662/wjm.v13.i4.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) tools, like OpenAI's Chat Generative Pre-trained Transformer (ChatGPT), hold considerable potential in healthcare, academia, and diverse industries. Evidence demonstrates its capability at a medical student level in standardized tests, suggesting utility in medical education, radiology reporting, genetics research, data optimization, and drafting repetitive texts such as discharge summaries. Nevertheless, these tools should augment, not supplant, human expertise. Despite promising applications, ChatGPT confronts limitations, including critical thinking tasks and generating false references, necessitating stringent cross-verification. Ensuing concerns, such as potential misuse, bias, blind trust, and privacy, underscore the need for transparency, accountability, and clear policies. Evaluations of AI-generated content and preservation of academic integrity are critical. With responsible use, AI can significantly improve healthcare, academia, and industry without compromising integrity and research quality. For effective and ethical AI deployment, collaboration amongst AI developers, researchers, educators, and policymakers is vital. The development of domain-specific tools, guidelines, regulations, and the facilitation of public dialogue must underpin these endeavors to responsibly harness AI's potential.