DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Topics in Current Chemistry Pub Date : 2020-02-03 DOI:10.1007/s41061-020-0282-z
Yuan Zhao, Lixia Shi, Hua Kuang, Chuanlai Xu
{"title":"DNA-Driven Nanoparticle Assemblies for Biosensing and Bioimaging","authors":"Yuan Zhao,&nbsp;Lixia Shi,&nbsp;Hua Kuang,&nbsp;Chuanlai Xu","doi":"10.1007/s41061-020-0282-z","DOIUrl":null,"url":null,"abstract":"<p>DNA molecules with superior flexibility, affinity and programmability have garnered considerable attention for the controllable assembly of nanoparticles (NPs). By controlling the density, length and sequences of DNA on NPs, the configuration of NP assemblies can be rationally designed. The specific recognition of DNA enables changes to be made to the spatial structures of NP assemblies, resulting in differences in tailorable optical signals. Comprehensive information on the fabrication of DNA-driven NP assemblies would be beneficial for their application in biosensing and bioimaging. This review analyzes the progress of DNA-driven NP assemblies, and discusses the tunable configurations determined by the structural parameters of DNA skeletons. The collective optical properties, such as chirality, fluorescence and surface enhanced Raman resonance (SERS), etc., of DNA-driven NP assemblies are explored, and engineered tailorable optical properties of these spatial structures are achieved. We discuss the development of DNA-directed NP assemblies for the quantification of DNA, toxins, and heavy metal ions, and demonstrate their potential application in the biosensing and bioimaging of tumor markers, RNA, living metal ions and phototherapeutics. We hihghlight possible challenges in the development of DNA-driven NP assemblies, and further direct potential prospects in the practical applications of macroscopical materials and photonic devices.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2020-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-0282-z","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-020-0282-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

DNA molecules with superior flexibility, affinity and programmability have garnered considerable attention for the controllable assembly of nanoparticles (NPs). By controlling the density, length and sequences of DNA on NPs, the configuration of NP assemblies can be rationally designed. The specific recognition of DNA enables changes to be made to the spatial structures of NP assemblies, resulting in differences in tailorable optical signals. Comprehensive information on the fabrication of DNA-driven NP assemblies would be beneficial for their application in biosensing and bioimaging. This review analyzes the progress of DNA-driven NP assemblies, and discusses the tunable configurations determined by the structural parameters of DNA skeletons. The collective optical properties, such as chirality, fluorescence and surface enhanced Raman resonance (SERS), etc., of DNA-driven NP assemblies are explored, and engineered tailorable optical properties of these spatial structures are achieved. We discuss the development of DNA-directed NP assemblies for the quantification of DNA, toxins, and heavy metal ions, and demonstrate their potential application in the biosensing and bioimaging of tumor markers, RNA, living metal ions and phototherapeutics. We hihghlight possible challenges in the development of DNA-driven NP assemblies, and further direct potential prospects in the practical applications of macroscopical materials and photonic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物传感和生物成像的dna驱动纳米粒子组件
DNA分子具有优越的柔韧性、亲和力和可编程性,在纳米颗粒的可控组装方面引起了人们的广泛关注。通过控制NP上DNA的密度、长度和序列,可以合理设计NP组件的结构。DNA的特异性识别使得改变NP组件的空间结构成为可能,从而导致可定制的光学信号的差异。全面了解dna驱动的NP装配的制备将有利于其在生物传感和生物成像中的应用。本文分析了DNA驱动的NP组装的进展,并讨论了由DNA骨架结构参数决定的可调配置。研究了dna驱动的NP组件的集体光学性质,如手性、荧光和表面增强拉曼共振(SERS)等,并实现了这些空间结构的工程定制光学性质。我们讨论了DNA定向NP组件的发展,用于DNA、毒素和重金属离子的定量,并展示了它们在肿瘤标志物、RNA、活金属离子和光治疗的生物传感和生物成像方面的潜在应用。我们强调了dna驱动的NP组件在发展中可能面临的挑战,并进一步指出了在宏观材料和光子器件的实际应用中的潜在前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
期刊最新文献
Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2 The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles Laser-Induced Transfer of Functional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1